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• The practice problems are meant as exercise to the students. You are NOT required to
submit your solutions, but you are encouraged to work through all of them in order to
understand the course materials. The problems will be uploaded on Fridays and solutions
will be uploaded on Wednesdays before the next lecture.

• Please send an email to zdmu@math.cuhk.edu.hk if you have any questions.

1. (a) For any x,

d

dx
tanhx =

(ex + e−x)2 − (ex − e−x)2

(ex + e−x)2

=
4

(ex + e−x)2
> 0

(b) Let’s write y = tanh(x) and try to express x in terms of y. We have y(ex + e−x) =
ex − e−x, so multiplying ex on both sides yields ye2x + y = e2x − 1. Rearranging
the terms to get e2x(1− y) = 1 + y. Now it’s clear to see that x = 1

2
ln
(

1+y
1−y

)
.

(c) Fixed any y > 0 and consider the function f(x) = tanh(x+ y)− tanhx− tanh y.
We have f(0) = 0. Let’s consider the second derivative of tanh, for any x > 0,

d2

dx2
tanhx =

−8(ex − e−x)

(ex + e−x)3
< 0

This means that tanh′(x) is strictly decreasing for x > 0. Therefore f ′(x) =
tanh′(x + y) − tanh′(x) < 0 since x < x + y. This in turns implies that f(x)
is strictly decreasing for x > 0, so in particular f(x) < f(0) and the result follows.

(d) First of all, p(z, w) ≥ 0 is obvious. And if p(z, w) = 0, the numerator must be 0
and so z = w. Symmetry p(z, w) = p(w, z) is also clear by definition. The only
thing we have to check is triangle inequality. By part (b) we know that p is related
to the hyperbolic distance d by the relation d(z, w) = ln 1+p(z,w)

1−p(z,w)
. So

p(z, w) = tanh
d(z, w)

2

To show the triangle inequality, consider three points z1, z2, z3, then by part (a), (c)

p(z1, z2) + p(z2, z3) = tanh

(
d(z1, z2)

2

)
+ tanh

(
d(z2, z3)

2

)
≥ tanh

(
d(z1, z2) + d(z2, z3)

2

)
≥ tanh

(
d(z1, z3

2

)
= p(z1, z3).



(e) This just directly follows from that fact that d is invariant under Mobius transforma-
tion f ∈ H , i.e. d(f(z), f(w)) = d(z, w), so we can just compose with tanh and
get the same result for p(z, w).

(f) We can just verify p(x, 0) = |x|
1−0

= −x and p(0, y) = |y|
1−0

= y, but p(x, y) =
y−x
1−xy

̸= y − x.

2. (a) Clearly the statement is true for z0 = 0, any hyperbolic circle centered at 0 is a
classical circle because D is rotational symmetric, i.e. S1 = {eiθ| θ ∈ [0, 2π)} ⊂ H .
Now C(z0, r) being defined by hyperbolic distance would be preserved under any
Mobius transformation f ∈ H , as f preserves hyperbolic distance. In other words,
f(C(z0, r)) = C(f(z0), r), as d(z, z0) = r ⇐⇒ d(f(z), f(z0)) = r. Now for any
z1 we can find an f ∈ H so that f(0) = z1, and we have f(C(0, r)) = C(z1, r). We
also know f maps clines to clines, this implies that C(z1, r) is also a cline contained
inside D, which must be a circle.

(b) This one might be a bit tricky. What we will show is that

z′0 =
1− tanh2(r/2)

1− |z0|2 tanh2(r/2)
z0, r′ =

(1− |z0|2) tanh(r/2)
1− |z0|2 tanh2(r/2)

The idea is that by reflectional symmetry. The hyperbolic and Euclidean center lie
on the same diameter. As in the picture below, we can find z1, z2 on the circle that
are (hyperbolically) equally far away from z0, given their coordinates we can figure
out z′0 =

1
2
(z1 + z2). Since they are all collinear, let’s write z1 = λz0 and z2 = µz0.

We have d(z0, µz0) = d(z0, λz0) = r. This gives

tanh(r/2) = tanh(d(z0, λz0)/2) = p(z0, λz0) =
(1− λ)|z0|
1− λ|z0|2

And similarly for µ,

tanh(r/2) =
(µ− 1)|z0|
1− µ|z0|2

One just has to make λ, µ as the subject in the above expressions.

tanh(r/2) =
1

|z0|
· |z0|

2 − λ|z0|2

1− λ|z0|2
=

1

|z0|

(
1− 1− |z0|2

1− λ|z0|2

)
So

λ =
1

|z0|2

(
1− 1− |z0|2

1− |z0| tanh(r/2)

)
=

1

|z0|
· |z0| − tanh(r/2)

1− |z0| tanh(r/2)

Likewise

µ =
1

|z0|2

(
1− 1− |z0|2

1 + |z0| tanh(r/2)

)
=

1

|z0|
· |z0|+ tanh(r/2)

1 + |z0| tanh(r/2)

Then after simplifying, we get

z′0 =
1

2
(µ+ λ)z0 =

1

2|z0|
· 2(|z0| − |z0| tanh2(r/2))

1− |z0|2 tanh2(r/2)
z0 =

1− tanh2(r/2)

1− |z0|2 tanh2(r/2)
z0



And r′ = |z′0 − λz0| = 1
2
(µ− λ)|z0|, so

r′ =
1

2|z0|
2(tanh(r/2)− |z0|2 tanh(r/2)

1− |z0|2 tanh2(r/2)
|z0| =

(1− |z0|2) tanh(r/2)
1− |z0|2 tanh2(r/2)

(c) Instead of looking at general C(z0, r), we can just compute the length of C(0, r),
by part (a) we know that they have the same hyperbolic lengths. C(0, r) is just the
Euclidean circle with radius r′ = tanh(r/2), so we can parametrize the circle by
z(θ) = r′eiθ for θ ∈ [0, 2π], then

ℓ(C(0, r)) = 2

∫ 2π

0

z′(θ) dθ

1− |z(θ)|2

= 2

∫ 2π

0

r′ dθ

1− r′2

=
4πr′

1− r′2

=
4π tanh(r/2)

1− tanh2(r/2)

=
4π tanh(r/2)

sech2(r/2)

= 2π · 2 sinh(r/2) cosh(r/2) = 2π sinh r

In the above computation, we have used some hyperbolic trigonometric identities
like 2 sinh(r/2) cosh(r/2) = sinh r and 1 − tanh2(r/2) = sech2(r/2). Note that



they are not exactly the same as the trigonometric ones. You can try to derive them
directly, or just note that cosh(x) = cos(ix) and sinh(x) = −i sin(ix). Then try to
translate the trigonometric identities into hyperbolic ones, e.g. 2 sinh(r/2) cosh(r/2) =
−i(2 sin(ir/2) cos(ir/2)) = −i sin(ir) = sinh(r). And 1 − tanh2(x) = 1 +
tan2(ix) = sec2(ix) = sech2(x).

3.

p

(
1

2
,
1

4
+

i

2

)
=

|1
2
− 1

4
− i

2
|

|1− 1
2
(1
4
− i

2
)|

=

√
5/4√
53/8

=
2
√
5√
53

So

d

(
1

2
,
1

4
+

i

2

)
= ln

√
53 + 2

√
5√

53− 2
√
5

You can rationalize it if it pleases you but there is little point in doing so.

4. We first compute d(i/2, (1 + i)/2). Like above,

p

(
i

2
,
1 + i

2

)
=

1
2

|1 + i
2
1+i
2
|
=

1/2√
10/4

=

√
10

5

And d(i/2, (1 + i)/2) = ln 5+
√
10

5−
√
10

≈ 1.49.

On the other hand, the classical straight line has hyperbolic length given by

ℓ(γ) = 2

∫ 1

0

γ′(t)

1− |γ(t)|2
dt

= 2

∫ 1

0

|q − p|
1− | t+i

2
|2
dt

= 2

∫ 1

0

1/2

1− t2+1
4

dt

=

∫ 1

0

4

3− t2
dt

=

∫ 1

0

4

2
√
3

(
1√
3− t

+
1√
3 + t

)
dt

=
2
√
3

3

(
ln(

√
3 + 1)− ln(

√
3− 1)

)
=

2
√
3

3
ln

√
3 + 1√
3− 1

≈ 1.52 > 1.49

5. If f is an isometry of (D, d), and say f(0) = a, then since we know Mobius transforma-
tion Ta(z) =

z−a
1−āz

∈ H is also an isometry, it follows that g = Ta ◦f is again an isometry,
with g(0) = 0. But now since g is an isometry, d(g(1

2
), 0) = d(1

2
, 0) would imply also

that |g(1
2
)| = 1

2
. So up to multiplying a factor of eiθ, we have h = eiθg(z) fixing both 0

and 1
2
. Notice that h is still an isometry.



Now let’s consider what would be h( i
2
), by property of isometry d( i

2
, 0) = d(h( i

2
), 0)

and d( i
2
, 1
2
) = d(h( i

2
), 1

2
). Recall from Q2 that hyperbolic circles are actually circle,

and we know that h( i
2
) should be on the intersection points of two hyperbolic circles,

one centered at 0 and another centered at 1
2
. Since two general circles only have two

intersection points, it is easy to see that there are two possibilities for h( i
2
), which is i

2
or

− i
2
.

In the first case, h is guaranteed to be the identity map since it fixes three points. However
the reason is not due to Mobius transformation, because we don’t know whether h is a
Mobius transformation to begin with. The reason is because the fact that if you know the
distance from a point p to three other points that do not lie on a hyperbolic straight line,
then p is actually uniquely determined. The reason is essentially the same as what we
discussed in the previous paragraph. Two general circles intersect at two points at most,
and one extra circle is needed to determine which of the two point it is. The three points
are required to not lie on the same hyperbolic straight line basically to avoid the situation
when all three circles intersect at two points.

Now with this fact, we know that since the isometry h fixes three points 0, 1
2
, i
2

and they
are not collinear, for any p ∈ D, by d(h(p), h(0)) = d(p, 0) and so on, we know that h(p)
and p have the same distance to the three points. This forces h(p) = p so h is just the
identity map. Now eiθTa ◦ f = id, so we have f(z) = T−1

a (e−iθz) which is a Mobius
transformation in H .

In the second case, by the x-axis reflectional symmetry, we can deduce like above that
h(z) = z̄, so f(z) = T−1

a (eiθz̄). This is the ”orientation-reversing” isometry. So up to
conjugation, it is still a Mobius transformation.

Remark: If you are curious about what orientation-reversing means, basically it means
that the derivative of f , i.e. Jacobian matrix, has determinant negative. Here we are taking
f(x, y) = u(x, y) + iv(x, y) = (u, v) as a function from R2 → R2.


