THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MMAT 5120 (2023-24, Term 1)

Topics in Geometry Homework 2

Due Date: 30th November 2023

We denote by i the imaginary unit $\sqrt{-1}$ and by $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ the open unit disk.

- 1. Find the area of the hyperbolic triangle in $\mathbb D$ with vertices at -1, 1, $\frac{\mathbf i}{\sqrt 3}$.
- 2. Find the area of the hyperbolic triangle in \mathbb{D} with vertices at 0, i, $2 \sqrt{3}$.
- 3. Show that the sum of exterior angles of a hyperbolic polygon is $2\pi + A$, where A is the hyperbolic area of the polygon.
- 4. Find the area of a hyperbolic equilateral triangle, each side of which has hyperbolic length $\cosh^{-1}(1+\sqrt{2})$. (*Hint*: Use the Sine and Cosine Rules.)
- 5. Let $\triangle ABC$ be a hyperbolic isosceles triangle right angled at C.
 - (a) Suppose the area of $\triangle ABC$ is $\frac{\pi}{6}$. Show that the length of the edge BC (or equivalently AC) is given by $\ln(\sqrt{2} + \sqrt{3})$.
 - (b) Show that the distance from the vertex C to the side AB is less than $\ln(1+\sqrt{2})$.

(*Hint:* Use the Sine and Cosine Rules.)