THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MMAT 5120 (2023-24, Term 1)
 Topics in Geometry
 Homework 2
 Due Date: 30th November 2023

We denote by \mathbf{i} the imaginary unit $\sqrt{-1}$ and by $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ the open unit disk.

1. Find the area of the hyperbolic triangle in \mathbb{D} with vertices at $-1,1, \frac{i}{\sqrt{3}}$.
2. Find the area of the hyperbolic triangle in \mathbb{D} with vertices at $0, \mathbf{i}, 2-\sqrt{3}$.
3. Show that the sum of exterior angles of a hyperbolic polygon is $2 \pi+A$, where A is the hyperbolic area of the polygon.
4. Find the area of a hyperbolic equilateral triangle, each side of which has hyperbolic length $\cosh ^{-1}(1+\sqrt{2})$. (Hint: Use the Sine and Cosine Rules.)
5. Let $\triangle A B C$ be a hyperbolic isosceles triangle right angled at C.
(a) Suppose the area of $\triangle A B C$ is $\frac{\pi}{6}$. Show that the length of the edge $B C$ (or equivalently $A C$) is given by $\ln (\sqrt{2}+\sqrt{3})$.
(b) Show that the distance from the vertex C to the side $A B$ is less than $\ln (1+\sqrt{2})$.
(Hint: Use the Sine and Cosine Rules.)
