THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MMAT 5120 (2023-24, Term 1)
 Topics in Geometry
 Homework 1
 Due Date: 19th October 2023

We always denote by \mathbf{i} the imaginary unit $\sqrt{-1}$.

1. Compute the following cross ratios:
(a) $\left(\infty, z_{1}, z_{2}, z_{3}\right)$,
(b) $\left(z_{0}, \infty, z_{2}, z_{3}\right)$,
(c) $\left(z_{0}, z_{1}, \infty, z_{3}\right)$,
(d) $\left(z_{0}, z_{1}, z_{2}, \infty\right)$.
2. Find a Möbius transformation which:
(a) sends $1 \mapsto 4,0 \mapsto \mathbf{i}$ and $\infty \mapsto-1$,
(b) sends $0 \mapsto 0, \mathbf{i} \mapsto 1$ and $-\mathbf{i} \mapsto 2$,
(c) takes the unit circle $C:=\{z \in \mathbb{C}:|z|=1\}$ to the straight line $x+y=1$.
3. Find all Möbius transformations which:
(a) have the fixed points 1 and -1 ,
(b) have only one fixed point at -1 .
4. Prove that all clines are congruent in Möbius geometry. (Hint: Apply the Fundamental Theorem of Möbius Geometry).
5. Let $C:=\{z \in \mathbb{C}:|z|=1\}$ be the unit circle. Find the points z^{*} symmetric with respect to C for:
(a) $z=1$,
(b) $z=1 / 2$,
(c) $z=\mathbf{i}$,
(d) $z=\mathbf{i} / 2$,
(e) $z=1+\mathbf{i}$,
(f) $z=(1+\mathbf{i}) / 2$.

Try to draw C and all the points z, z^{*} in the same figure.

