MMAT 5010 Linear Analysis Suggested Solution of Homework 9

1. Let $(X,\langle\cdot, \cdot\rangle)$ be an inner product space. Show that the inner product $\langle\cdot, \cdot\rangle: X \times$ $X \rightarrow \mathbb{C}$ is continuous, that is, whenever the sequences $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in X, we have $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$.
From this show that if A is a subset of X, then $A^{\perp}:=\{x \in X: x \perp y$, for all $y \in A\}$ is a closed subset of X.

Solution. By the defining properties of inner product and Cauchy-Schwarz ineqaulity, we have

$$
\begin{aligned}
\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right| & =\left|\left\langle x_{n}-x, y_{n}\right\rangle+\left\langle x, y_{n}-y\right\rangle\right| \\
& \leq\left\|x_{n}-x \mid\right\| y_{n}\|+\| x\| \| y_{n}-y \| .
\end{aligned}
$$

If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in X, then $\left\|x_{n}-x\right\| \rightarrow 0,\left\|y_{n}-y\right\| \rightarrow 0$ and $\left\|y_{n}\right\| \rightarrow\|y\|$, forcing $\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right| \rightarrow 0$. Therefore, the inner product $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{C}$ is continuous.
Suppose $\left(x_{n}\right)$ is a sequence in A^{\perp} that converges to x in X. Then, for all $y \in A$, we have $x_{n} \perp y$, that is $\left\langle x_{n}, y\right\rangle=0$ for all $n \in \mathbb{N}$. By the continuity of $\langle\cdot, \cdot\rangle$, we have $\langle x, y\rangle=0$, that is $x \in A^{\perp}$. Therefore A^{\perp} is closed.
2. Let $\left(X,\langle\cdot, \cdot\rangle_{X}\right)$ and $\left(Y,\langle\cdot, \cdot\rangle_{Y}\right)$ be Hilbert spaces. For $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$, put

$$
\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle_{X \times Y}:=\left\langle x_{1}, x_{2}\right\rangle_{X}+\left\langle y_{1}, y_{2}\right\rangle_{Y}
$$

Show that $\langle\cdot, \cdot\rangle_{X \times Y}$ is an inner product on the direct sum $X \times Y$ and it is a Hilbert space under this inner product.

Solution. For $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in X \times Y$, and $\alpha, \beta \in \mathbb{C}$,
(i) $\left\langle\left(x_{1}, y_{1}\right),\left(x_{1}, y_{1}\right)\right\rangle_{X \times Y}=\left\langle x_{1}, x_{1}\right\rangle_{X}+\left\langle y_{1}, y_{1}\right\rangle_{Y} \geq 0$, and it is 0 iff $\left\langle x_{1}, x_{1}\right\rangle_{X}=$ $\left\langle y_{1}, y_{1}\right\rangle_{Y}=0$ iff $x_{1}=0_{X}$ and $y_{1}=0_{Y}$;
(ii) $\overline{\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle_{X \times Y}}=\overline{\left\langle x_{1}, x_{2}\right\rangle_{X}+\left\langle y_{1}, y_{2}\right\rangle_{Y}}=\overline{\left\langle x_{1}, x_{2}\right\rangle_{X}}+\overline{\left\langle y_{1}, y_{2}\right\rangle_{Y}}$ $=\left\langle x_{2}, x_{1}\right\rangle_{X}+\left\langle y_{2}, y_{1}\right\rangle_{Y}=\left\langle\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right\rangle_{X \times Y} ;$
(iii) $\left\langle\alpha\left(x_{1}, y_{1}\right)+\beta\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right\rangle_{X \times Y}=\left\langle\left(\alpha x_{1}+\beta x_{2}, \alpha y_{1}+\beta y_{2}\right),\left(x_{3}, y_{3}\right)\right\rangle_{X \times Y}$ $=\left\langle\alpha x_{1}+\beta x_{2}, x_{3}\right\rangle_{X}+\left\langle\alpha y_{1}+\beta y_{2}, y_{3}\right\rangle_{Y}=\alpha\left\langle x_{1}, x_{3}\right\rangle_{X}+\beta\left\langle x_{2}, x_{3}\right\rangle_{X}+\alpha\left\langle y_{1}, y_{3}\right\rangle_{Y}+$ $\beta\left\langle y_{2}, y_{3}\right\rangle_{Y}=\alpha\left\langle\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right\rangle_{X \times Y}+\beta\left\langle\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right\rangle_{X \times Y}$.

Hence, $\langle\cdot, \cdot\rangle_{X \times Y}$ is an inner product on the $X \times Y$.
To see that $\left(X \times Y,\langle\cdot, \cdot\rangle_{X \times Y}\right)$ is a Hilbert space, let $\left(x_{n}, y_{n}\right)$ be a Cauchy sequence in $X \times Y$ under the norm

$$
\|(x, y)\|_{X \times Y}:=\sqrt{\langle(x, y),(x, y)\rangle_{X \times Y}}=\sqrt{\langle x, x\rangle_{X}+\langle y, y\rangle_{Y}}=\sqrt{\|x\|_{X}^{2}+\|y\|_{Y}^{2}}
$$

where $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$ are the norm on X and Y induced by their respective inner products. Then $\left(x_{n}\right)$ is a Cauchy sequence in $\left(X,\|\cdot\|_{X}\right)$ and $\left(y_{n}\right)$ is a Cauchy sequence in $\left(Y,\|\cdot\|_{Y}\right)$, since

$$
\left\|x_{n}-x_{m}\right\|_{X},\left\|y_{n}-y_{m}\right\|_{Y} \leq\left\|\left(x_{n}, y_{n}\right)-\left(x_{m}, y_{m}\right)\right\|_{X \times Y} .
$$

Since X and Y are Hilbert spaces, there are $x \in X$ and $y \in Y$ such that $\left\|x_{n}-x\right\|_{X} \rightarrow$ 0 and $\left\|y_{n}-y\right\|_{Y} \rightarrow 0$. Now $\left(x_{n}, y_{n}\right)$ converges to (x, y) in $\left(X \times Y,\|\cdot\|_{X \times Y}\right)$ because

$$
\left\|\left(x_{n}, y_{n}\right)-(x, y)\right\|_{X \times Y}=\sqrt{\left\|x_{n}-x\right\|_{X}^{2}+\left\|y_{n}-y\right\|_{Y}^{2}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Therefore $\left(X \times Y,\langle\cdot, \cdot\rangle_{X \times Y}\right)$ is a Hilbert space.

