MMAT 5010 Linear Analysis Suggested Solution of Homework 8

1. Let φ_{k} be the k-th coordinate functional corresponding to the natural basis of ℓ_{1}, that is $\varphi_{k}(x):=x(k)$ for $x \in \ell_{1}$ and $k=1,2, \ldots$. Show that $\varphi_{k} \in \ell_{1}^{*}$ and find $\left\|\varphi_{k}\right\|$.

Solution. Clearly φ_{k} is a linear functional on ℓ_{1}. It remains to check that φ_{k} is bounded. For any $x \in \ell_{1}$,

$$
\left|\varphi_{k}(x)\right|=|x(k)| \leq \sum_{i=1}^{\infty}|x(i)|=\|x\|_{1}
$$

So $\varphi_{k} \in \ell_{1}$ and $\left\|\varphi_{k}\right\| \leq 1$.
On the other hand, take $x=e_{k} \in \ell_{1}$ given by $e_{k}(j)=1$ if $j=k$ and 0 otherwise. Then

$$
\left|\varphi_{k}\left(e_{k}\right)\right|=\left|e_{k}(k)\right|=1=\sum_{j=1}^{\infty}\left|e_{k}(j)\right|=\left\|e_{k}\right\|_{1} .
$$

Hence $\left\|\varphi_{k}\right\|=1$.
2. Let X, Y be the non-zero normed spaces. Then for any non-zero element $x \in X$, there is a bounded linear map $T: X \rightarrow Y$ such that $T x \neq 0$.

Solution. Let $x_{0} \in X \backslash\{0\}$. By Proposition 4.9, there is $f \in X^{*}$ with $\|f\|=1$ such that $f\left(x_{0}\right)=\left\|x_{0}\right\| \neq 0$. Fix a non-zero $y_{0} \in Y$. Define $T x=f(x) y_{0}$ for any $x \in X$. Then $T \in B(X, Y)$ since

$$
\|T x\|_{Y}=\left\|f(x) y_{0}\right\|_{Y}=|f(x)|\left\|y_{0}\right\|_{Y} \leq\|f\|\|x\|_{X}\left\|y_{0}\right\|_{Y}=\left\|y_{0}\right\|_{Y}\|x\|_{X} .
$$

Finally $\left\|T x_{0}\right\|=\left|f\left(x_{0}\right)\right|\left\|y_{0}\right\|_{Y}=\left\|x_{0}\right\|_{X}\left\|y_{0}\right\|_{Y} \neq 0$.

