MMAT 5010 Linear Analysis Suggested Solution of Homework 8

1. Let φ_k be the k-th coordinate functional corresponding to the natural basis of ℓ_1 , that is $\varphi_k(x) \coloneqq x(k)$ for $x \in \ell_1$ and $k = 1, 2, \ldots$ Show that $\varphi_k \in \ell_1^*$ and find $\|\varphi_k\|$.

Solution. Clearly φ_k is a linear functional on ℓ_1 . It remains to check that φ_k is bounded. For any $x \in \ell_1$,

$$|\varphi_k(x)| = |x(k)| \le \sum_{i=1}^{\infty} |x(i)| = ||x||_1.$$

So $\varphi_k \in \ell_1$ and $\|\varphi_k\| \leq 1$.

On the other hand, take $x = e_k \in \ell_1$ given by $e_k(j) = 1$ if j = k and 0 otherwise. Then

$$|\varphi_k(e_k)| = |e_k(k)| = 1 = \sum_{j=1}^{\infty} |e_k(j)| = ||e_k||_1.$$

Hence $\|\varphi_k\| = 1$.

2. Let X, Y be the non-zero normed spaces. Then for any non-zero element $x \in X$, there is a bounded linear map $T: X \to Y$ such that $Tx \neq 0$.

Solution. Let $x_0 \in X \setminus \{0\}$. By Proposition 4.9, there is $f \in X^*$ with ||f|| = 1 such that $f(x_0) = ||x_0|| \neq 0$. Fix a non-zero $y_0 \in Y$. Define $Tx = f(x)y_0$ for any $x \in X$. Then $T \in B(X, Y)$ since

$$||Tx||_{Y} = ||f(x)y_{0}||_{Y} = |f(x)|||y_{0}||_{Y} \le ||f||||x||_{X}||y_{0}||_{Y} = ||y_{0}||_{Y}||x||_{X}$$

Finally $||Tx_0|| = |f(x_0)|||y_0||_Y = ||x_0||_X ||y_0||_Y \neq 0.$