MMAT 5010 Linear Analysis Suggested Solution of Homework 7

1. Let $X := \mathbb{R}^N$ be a two dimensional real vector space with the usual norm, that is $\|x\| := \sqrt{x_1^2 + \cdots + x_N^2}$ for $x = (x_1, \dots, x_N)$. For each $x, y \in \mathbb{R}^N$, put $T(x)(y) := \sum_{k=1}^N x(k)y(k)$. Show that T is an isometric isomorphism from \mathbb{R}^N onto its dual space.

Solution. It is straightforward to check that T(x) is a linear functional for each $x \in \mathbb{R}^N$ and T is linear.

By Cauchy-Schwarz inequality, for each $x = (x_1, \ldots, x_N), y = (y_1, \ldots, y_N) \in \mathbb{R}^N$,

$$|T(x)(y)| = \left|\sum_{k=1}^{N} x(k)y(k)\right| \le \left(\sum_{k=1}^{N} x(k)^2\right)^{1/2} \left(\sum_{k=1}^{N} y(k)^2\right)^{1/2} = ||x|| ||y||$$

So, for all $x \in \mathbb{R}^N$, $T(x) \in (\mathbb{R}^N)^*$ and $||T(x)|| \leq ||x||$. On the other hand, for each $x = (x_1, \ldots, x_N) \in \mathbb{R}^N$,

$$|T(x)(x)| = \left|\sum_{k=1}^{N} x(k)x(k)\right| = ||x|| ||x||.$$

Thus ||T(x)|| = ||x||. Hence T is an isometry, which must be injective. It remains to show that T is a surjection.

Let $\phi \in (\mathbb{R}^N)^*$ and let $e_k \in \mathbb{R}^N$ be given by $e_k(j) = 1$ if j = k and 0 otherwise. Put $x_k = \phi(e_k)$ for k = 1, ..., N. Then $x \coloneqq (x_1, ..., x_N) \in \mathbb{R}^N$ satisfies, for any $y = (y_1, ..., y_N) \in \mathbb{R}^N$,

$$\phi(y) = \phi\left(\sum_{k=1}^{N} y_k e_k\right) = \sum_{k=1}^{N} y_k \phi(e_k) = \sum_{k=1}^{N} x_k y_k = T(x)(y).$$

Hence T is a surjection.

Therefore T is an isometric isomorphism from \mathbb{R}^N onto $(\mathbb{R}^N)^*$.

2. Let X be a normed space and let $0 \neq x_0 \in X$. Show that there is $f \in X^*$ such that $f(x_0) = 1$ and $||f|| = 1/||x_0||$.

Solution. Let $Y = \mathbb{K}x_0$. Define $f_0 : Y \to X$ by $f(\alpha x_0) \coloneqq \alpha$ for $\alpha \in \mathbb{K}$. Then $f_0 \in Y^*$ with $||f_0|| = 1/||x_0||$. By Hahn-Banach Theorem, there exists a linear extension $f \in X^*$ of f_0 such that $||f|| = ||f_0||$. In particular, $f(x_0) = f_0(x_0) = 1$ and $||f|| = ||f_0|| = 1/||x_0||$.