MMAT 5010 Linear Analysis Suggested Solution of Homework 7

1. Let $X:=\mathbb{R}^{N}$ be a two dimensional real vector space with the usual norm, that is $\|x\|:=\sqrt{x_{1}^{2}+\cdots+x_{N}^{2}}$ for $x=\left(x_{1}, \ldots, x_{N}\right)$. For each $x, y \in \mathbb{R}^{N}$, put $T(x)(y):=$ $\sum_{k=1}^{N} x(k) y(k)$. Show that T is an isometric isomorphism from \mathbb{R}^{N} onto its dual space.

Solution. It is straightforward to check that $T(x)$ is a linear functional for each $x \in \mathbb{R}^{N}$ and T is linear.
By Cauchy-Schwarz inequality, for each $x=\left(x_{1}, \ldots, x_{N}\right), y=\left(y_{1}, \ldots, y_{N}\right) \in \mathbb{R}^{N}$,

$$
|T(x)(y)|=\left|\sum_{k=1}^{N} x(k) y(k)\right| \leq\left(\sum_{k=1}^{N} x(k)^{2}\right)^{1 / 2}\left(\sum_{k=1}^{N} y(k)^{2}\right)^{1 / 2}=\|x\|\|y\| .
$$

So, for all $x \in \mathbb{R}^{N}, T(x) \in\left(\mathbb{R}^{N}\right)^{*}$ and $\|T(x)\| \leq\|x\|$. On the other hand, for each $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$,

$$
|T(x)(x)|=\left|\sum_{k=1}^{N} x(k) x(k)\right|=\|x\|\|x\|
$$

Thus $\|T(x)\|=\|x\|$. Hence T is an isometry, which must be injective. It remains to show that T is a surjection.
Let $\phi \in\left(\mathbb{R}^{N}\right)^{*}$ and let $e_{k} \in \mathbb{R}^{N}$ be given by $e_{k}(j)=1$ if $j=k$ and 0 otherwise. Put $x_{k}=\phi\left(e_{k}\right)$ for $k=1, \ldots, N$. Then $x:=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$ satisfies, for any $y=\left(y_{1}, \ldots, y_{N}\right) \in \mathbb{R}^{N}$,

$$
\phi(y)=\phi\left(\sum_{k=1}^{N} y_{k} e_{k}\right)=\sum_{k=1}^{N} y_{k} \phi\left(e_{k}\right)=\sum_{k=1}^{N} x_{k} y_{k}=T(x)(y) .
$$

Hence T is a surjection.
Therefore T is an isometric isomorphism from \mathbb{R}^{N} onto $\left(\mathbb{R}^{N}\right)^{*}$.
2. Let X be a normed space and let $0 \neq x_{0} \in X$. Show that there is $f \in X^{*}$ such that $f\left(x_{0}\right)=1$ and $\|f\|=1 /\left\|x_{0}\right\|$.

Solution. Let $Y=\mathbb{K} x_{0}$. Define $f_{0}: Y \rightarrow X$ by $f\left(\alpha x_{0}\right):=\alpha$ for $\alpha \in \mathbb{K}$. Then $f_{0} \in Y^{*}$ with $\left\|f_{0}\right\|=1 /\left\|x_{0}\right\|$. By Hahn-Banach Theorem, there exists a linear extension $f \in X^{*}$ of f_{0} such that $\|f\|=\left\|f_{0}\right\|$. In particular, $f\left(x_{0}\right)=f_{0}\left(x_{0}\right)=1$ and $\|f\|=\left\|f_{0}\right\|=1 /\left\|x_{0}\right\|$.

