MMAT 5010 Linear Analysis Suggested Solution of Homework 6

1. Let $X:=\mathbb{R}^{2}$ be a two dimensional real vector space and let A be the matrix $\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)$. Define a mapping $T: X \rightarrow X$ by $T x=A x$ for $x \in X$. Suppose that X is endowed with the $\|\cdot\|_{1}$-norm, that is $\|x\|_{1}:=\left|x_{1}\right|+\left|x_{2}\right|$ for $x=\binom{x_{1}}{x_{2}} \in X$. Find $\|T\|$.

Solution. For any $x=\binom{x_{1}}{x_{2}} \in X$, write $x=x_{1} e_{1}+x_{2} e_{2}$, where $e_{1}=(1,0)$ and $e_{2}=(0,1)$. Then

$$
\begin{aligned}
\|T x\|_{1}=\left\|A\left(x_{1} e_{1}+x_{2} e_{2}\right)\right\|_{1} & \leq\left|x_{1}\right|\left\|A e_{1}\right\|_{1}+\left|x_{2}\right|\left\|A e_{2}\right\|_{1} \\
& \leq\left(\max _{i=1,2}\left\|A e_{i}\right\|_{1}\right)\left(\left|x_{1}\right|+\left|x_{2}\right|\right) \\
& =\left(\max _{i=1,2}\left\|A e_{i}\right\|_{1}\right)\|x\|_{1} .
\end{aligned}
$$

So T is a bounded linear operator with $\|T\| \leq \max _{i=1,2}\left\|A e_{i}\right\|_{1}$.
Next we will show that $\|T\| \geq \max _{i=1,2}\left\|A e_{i}\right\|_{1}$. Suppose $\left\|A e_{k}\right\|_{1}=\max _{i=1,2}\left\|A e_{i}\right\|_{1}$. Then $\left\|e_{k}\right\|_{1}=1$ and $\left\|T e_{k}\right\|=\left\|A e_{k}\right\|_{1}=\max _{i=1,2}\left\|A e_{i}\right\|_{1}$. Therefore $\|T\| \geq \max _{i=1,2}\left\|A e_{i}\right\|_{1}$.
For the given $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)$, we have

$$
\|T\|=\max \left\{\left\|\binom{1}{0}\right\|_{1},\left\|\binom{2}{3}\right\|_{1}\right\}=\max \{1,5\}=5
$$

2. Recall that c_{00} denotes the finite sequence space which is equipped with the $\|\cdot\|_{1}$ norm. Let $T: c_{00} \rightarrow c_{00}$ be the linear map given by

$$
T(x)(k):=k x(k)
$$

for $k=1,2, \ldots$ and $x \in c_{00}$. Show that T is a discontinuous map.
Solution. Let $\left(x_{n}\right)$ be the sequence in c_{00} defined by

$$
x_{n}(k):= \begin{cases}\frac{1}{n} & \text { if } k=n \\ 0 & \text { otherwise }\end{cases}
$$

That is

$$
x_{1}=(1,0,0, \ldots), \quad x_{2}=(0,1 / 2,0,0, \ldots), \quad x_{3}=(0,0,1 / 3,0,0, \ldots), \quad \ldots
$$

Then $\left(x_{n}\right)$ converges to the constant zero sequence $\mathbf{0}$ in $\|\cdot\|_{1}$-norm since

$$
\left\|x_{n}-\mathbf{0}\right\|_{1}=\sum_{k=1}^{\infty}\left|x_{n}(k)\right|=\frac{1}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

However, $\left(T x_{n}\right)$ does not converge to $T \mathbf{0}=\mathbf{0}$ in $\|\cdot\|_{1}$-norm because

$$
\left\|T x_{n}-\mathbf{0}\right\|_{1}=\sum_{k=1}^{\infty}\left|k x_{n}(k)\right|=n \cdot \frac{1}{n}=1 \quad \text { for any } n \in \mathbb{N}
$$

Therefore T is discontinuous at $\mathbf{0}$.
3. The left shift operator $T: \ell^{2} \rightarrow \ell^{2}$ is given by $T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right) \in$ ℓ^{2}. Find $\|T\|$.

Solution. For any $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \ell^{2}$,

$$
\|T x\|_{2}^{2}=\sum_{i=2}^{\infty}\left|x_{i}\right|^{2} \leq \sum_{i=1}^{\infty}\left|x_{i}\right|^{2}=\|x\|_{2}^{2}
$$

Hence T is a bounded linear operator with $\|T\| \leq 1$.
On the other hand, for $y=\left(0, y_{1}, y_{2}, y_{3}, \ldots\right) \in \ell^{2}$, we have

$$
\|T y\|_{2}^{2}=\sum_{i=1}^{\infty}\left|y_{i}\right|^{2}=\|y\|_{2}^{2}
$$

Hence $\|T\| \geq 1$. Therefore $\|T\|=1$.

