MMAT 5010 Linear Analysis Suggested Solution of Homework 6

1. Let $X := \mathbb{R}^2$ be a two dimensional real vector space and let A be the matrix $\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$. Define a mapping $T : X \to X$ by Tx = Ax for $x \in X$. Suppose that X is endowed with the $\|\cdot\|_1$ -norm, that is $\|x\|_1 := |x_1| + |x_2|$ for $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in X$. Find $\|T\|$.

Solution. For any $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in X$, write $x = x_1e_1 + x_2e_2$, where $e_1 = (1,0)$ and $e_2 = (0,1)$. Then

$$||Tx||_{1} = ||A(x_{1}e_{1} + x_{2}e_{2})||_{1} \le |x_{1}|||Ae_{1}||_{1} + |x_{2}|||Ae_{2}||_{1}$$
$$\le \left(\max_{i=1,2} ||Ae_{i}||_{1}\right) (|x_{1}| + |x_{2}|)$$
$$= \left(\max_{i=1,2} ||Ae_{i}||_{1}\right) ||x||_{1}.$$

So T is a bounded linear operator with $||T|| \leq \max_{i=1,2} ||Ae_i||_1$.

Next we will show that $||T|| \ge \max_{i=1,2} ||Ae_i||_1$. Suppose $||Ae_k||_1 = \max_{i=1,2} ||Ae_i||_1$. Then $||e_k||_1 = 1$ and $||Te_k|| = ||Ae_k||_1 = \max_{i=1,2} ||Ae_i||_1$. Therefore $||T|| \ge \max_{i=1,2} ||Ae_i||_1$.

For the given $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$, we have $\|T\| = \max\left\{ \left\| \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\|_1, \left\| \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\|_1 \right\} = \max\{1, 5\} = 5.$

2. Recall that c_{00} denotes the finite sequence space which is equipped with the $\|\cdot\|_1$ -norm. Let $T: c_{00} \to c_{00}$ be the linear map given by

$$T(x)(k) \coloneqq kx(k)$$

for k = 1, 2, ... and $x \in c_{00}$. Show that T is a discontinuous map.

Solution. Let (x_n) be the sequence in c_{00} defined by

$$x_n(k) \coloneqq \begin{cases} \frac{1}{n} & \text{if } k = n, \\ 0 & \text{otherwise.} \end{cases}$$

That is

$$x_1 = (1, 0, 0, \dots), \quad x_2 = (0, 1/2, 0, 0, \dots), \quad x_3 = (0, 0, 1/3, 0, 0, \dots), \quad \cdots$$

Then (x_n) converges to the constant zero sequence **0** in $\|\cdot\|_1$ -norm since

$$||x_n - \mathbf{0}||_1 = \sum_{k=1}^{\infty} |x_n(k)| = \frac{1}{n} \to 0 \text{ as } n \to \infty.$$

However, (Tx_n) does not converge to $T\mathbf{0} = \mathbf{0}$ in $\|\cdot\|_1$ -norm because

$$||Tx_n - \mathbf{0}||_1 = \sum_{k=1}^{\infty} |kx_n(k)| = n \cdot \frac{1}{n} = 1 \quad \text{for any } n \in \mathbb{N}.$$

Therefore T is discontinuous at **0**.

3. The left shift operator $T: \ell^2 \to \ell^2$ is given by $T(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots) \in \ell^2$. Find ||T||.

Solution. For any $x = (x_1, x_2, x_3, \dots) \in \ell^2$,

$$||Tx||_2^2 = \sum_{i=2}^{\infty} |x_i|^2 \le \sum_{i=1}^{\infty} |x_i|^2 = ||x||_2^2$$

Hence T is a bounded linear operator with $||T|| \leq 1$. On the other hand, for $y = (0, y_1, y_2, y_3, ...) \in \ell^2$, we have

$$||Ty||_2^2 = \sum_{i=1}^{\infty} |y_i|^2 = ||y||_2^2.$$

Hence $||T|| \ge 1$. Therefore ||T|| = 1.