MMAT 5010 Linear Analysis Suggested Solution of Homework 5

1. Suppose that the Euclidean space \mathbb{R}^{n} is endowed with the usual norm, that is, $\|x\|_{2}:=\sqrt{\sum_{k=1}^{n}\left|x_{k}\right|^{2}}$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. For each $x \in \mathbb{R}^{n}$, put $\|x\|_{\infty}:=$ $\max _{1 \leq k \leq n}\left|x_{k}\right|$. Using the definition of equivalent norms, show that $\|\cdot\|_{2}$ and $\|\cdot\|_{\infty}$ are equivalent norms. From this, show that if we let $I:\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \rightarrow\left(\mathbb{R}^{n},\|\cdot\|_{2}\right)$ be the identity map, i.e., $I(x)=x$ for all $x \in \mathbb{R}^{n}$, then the map I and its inverse map I^{-1} both are continuous.

Solution. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we have

$$
\max _{1 \leq k \leq n}\left|x_{k}\right| \leq \sqrt{\sum_{k=1}^{n}\left|x_{k}\right|^{2}} \leq \sqrt{\sum_{k=1}^{n}\left(\max _{1 \leq k \leq n}\left|x_{k}\right|\right)^{2}}=\sqrt{n} \max _{1 \leq k \leq n}\left|x_{k}\right|
$$

and so

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}
$$

Thus $\|\cdot\|_{2}$ and $\|\cdot\|_{\infty}$ are equivalent norms.
The identity map $I:\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \rightarrow\left(\mathbb{R}^{n},\|\cdot\|_{2}\right)$ and its inverse $I^{-1}:\left(\mathbb{R}^{n},\|\cdot\|_{2}\right) \rightarrow$ $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ are clearly linear. They are also bounded because, for any $x \in \mathbb{R}^{n}$,

$$
\|I x\|_{2}=\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}
$$

and

$$
\left\|I^{-1} x\right\|_{\infty}=\|x\|_{\infty} \leq\|x\|_{2} .
$$

By Proposition 3.4, both I and I^{-1} are continuous.
2. Let $X:=\{f:[a, b] \rightarrow \mathbb{R}: f$ is continuous $\}$. For each $f \in X$, let $\|f\|_{1}:=\int_{a}^{b}|f(t)| d t$ and $\|f\|_{\infty}:=\sup \{|f(t)|: t \in[a, b]\}$. Put

$$
T f(x):=\int_{a}^{x} f(t) d t
$$

for $x \in[a, b]$. Show that $T:\left(X,\|\cdot\|_{1}\right) \rightarrow\left(X,\|\cdot\|_{\infty}\right)$ is a bounded linear map of norm 1.

Solution. If f is continuous on $[a, b]$, then $T f(x)=\int_{a}^{x} f(t) d t$ is continuous on $[a, b]$ by the Fundamental Theorem of Calculus. Furthermore, given $f, g \in X$ and $\alpha, \beta \in \mathbb{R}$, we have
$T(\alpha f+\beta g)(x)=\int_{a}^{x}[\alpha f(t)+\beta g(t)] d t=\alpha \int_{a}^{x} f(t) d t+\beta \int_{a}^{x} g(t) d t=(\alpha T f+\beta T g)(x)$,
and

$$
|T f(x)|=\left|\int_{a}^{x} f(t) d t\right| \leq \int_{a}^{x}|f(t)| d t \leq \int_{a}^{b}|f(t)| d t=\|f\|_{1}<\infty
$$

for any $x \in[a, b]$. So $T:\left(X,\|\cdot\|_{1}\right) \rightarrow\left(X,\|\cdot\|_{\infty}\right)$ is a well-defined linear map. Now, for $f \in X$ with $\|f\|_{1} \leq 1$, we have

$$
\|T f\|_{\infty} \leq\|f\|_{1} \leq 1
$$

Hence T is bounded and $\|T\| \leq 1$.
On the other hand, if we let $g:[a, b] \rightarrow \mathbb{R}$ be given by $g(x)=\frac{1}{b-a}$, then $g \in X$ and

$$
\|g\|_{1}=\int_{a}^{b} \frac{1}{b-a} d t=1
$$

Moreover,

$$
T g(x)=\int_{a}^{x} \frac{1}{b-a} d t=\frac{x-a}{b-a} \quad \text { for } x \in[a, b]
$$

which is increasing on $[a, b]$, and thus $\|T g\|_{\infty}=T g(b)=1$. Therefore $\|T\| \geq 1$.

