MMAT 5010 Linear Analysis Suggested Solution of Homework 4

1. Let B(X, Y) denote the space of all bounded linear operators between the normed spaces X and Y. Show that if we put $||T|| := \sup\{||Tx|| : x \in X; ||x|| \le 1\}$, then $||\cdot||$ is a norm function on B(X, Y).

Solution. Clearly $||T|| \ge 0$ for any $T \in B(X, Y)$. Moreover,

- (i) if $T = 0 \in B(X, Y)$, then ||Tx|| = ||0|| = 0 for any $x \in X$, and so ||T|| = 0; if ||T|| = 0, then ||Tx|| = 0 for any $x \in X$ with $||x|| \le 1$, and so by linearity Tx = 0 for any $x \in X$, i.e. T is the zero operator;
- (ii) if $\alpha \in \mathbb{K}$ and $T \in B(X, Y)$, then $||(\alpha T)x|| = |\alpha|||Tx||$ for any $x \in X$ with $||x|| \le 1$, and so $||\alpha T|| = |\alpha|||T||$;
- (iii) if $T, S \in B(X, Y)$, then $||(T+S)x|| = ||Tx+Sx|| \le ||Tx|| + ||Sx|| \le ||T|| + ||S||$ for any $x \in X$ with $||x|| \le 1$, and so $||T+S|| \le ||T|| + ||S||$.
- 2. Let $T: X \to Y$ and $G: Y \to Z$ be two bounded linear operators between normed spaces. Show that the composition satisfies $||G \circ T|| \leq ||G|| ||T||$.

Solution. Note that, if $S: X \to Y$ is a bounded linear operator, then

$$||Sx|| \le ||S|| ||x|| \quad \text{for any } x \in X.$$

So, for any $x \in X$ with $||x|| \leq 1$, we have

$$\|(G \circ T)x\| = \|G(Tx)\| \le \|G\|\|Tx\| \le \|G\|\|T\|\|x\| \le \|G\|\|T\|$$

Therefore $||G \circ T|| \leq ||G|| ||T||$.

3. Let X = C[0,1] be the Banach space endowed with the sup-norm. Define the operator $T: X \to \mathbb{R}$ by $Tf \coloneqq \int_0^1 f(x) dx$ for $f \in X$. Find ||T||.

Solution. For any $f \in X$, we have

$$|Tf| = \left| \int_0^1 f(x) \, dx \right| \le \int_0^1 |f(x)| \, dx \le \int_0^1 ||f||_\infty \, dx = ||f||_\infty.$$

Hence $||T|| \leq 1$.

On the other hand, if we let $g: [0,1] \to \mathbb{R}$ be given by g(x) = 1 for $x \in [0,1]$, then $\|g\|_{\infty} = 1$ and

$$|Tg| = \left| \int_0^1 g(x) \, dx \right| = \left| \int_0^1 1 \, dx \right| = 1.$$

Hence $||T|| \ge 1$. Therefore ||T|| = 1.

4	
_	