MMAT 5010 Linear Analysis Suggested Solution of Homework 4

1. Let $B(X, Y)$ denote the space of all bounded linear operators between the normed spaces X and Y. Show that if we put $\|T\|:=\sup \{\|T x\|: x \in X ;\|x\| \leq 1\}$, then $\|\cdot\|$ is a norm function on $B(X, Y)$.

Solution. Clearly $\|T\| \geq 0$ for any $T \in B(X, Y)$. Moreover,
(i) if $T=0 \in B(X, Y)$, then $\|T x\|=\|0\|=0$ for any $x \in X$, and so $\|T\|=0$;
if $\|T\|=0$, then $\|T x\|=0$ for any $x \in X$ with $\|x\| \leq 1$, and so by linearity $T x=0$ for any $x \in X$, i.e. T is the zero operator;
(ii) if $\alpha \in \mathbb{K}$ and $T \in B(X, Y)$, then $\|(\alpha T) x\|=|\alpha|\|T x\|$ for any $x \in X$ with $\|x\| \leq 1$, and so $\|\alpha T\|=|\alpha|\|T\| ;$
(iii) if $T, S \in B(X, Y)$, then $\|(T+S) x\|=\|T x+S x\| \leq\|T x\|+\|S x\| \leq\|T\|+\|S\|$ for any $x \in X$ with $\|x\| \leq 1$, and so $\|T+S\| \leq\|T\|+\|S\|$.
2. Let $T: X \rightarrow Y$ and $G: Y \rightarrow Z$ be two bounded linear operators between normed spaces. Show that the composition satisfies $\|G \circ T\| \leq\|G\|\|T\|$.

Solution. Note that, if $S: X \rightarrow Y$ is a bounded linear operator, then

$$
\|S x\| \leq\|S\|\|x\| \quad \text { for any } x \in X
$$

So, for any $x \in X$ with $\|x\| \leq 1$, we have

$$
\|(G \circ T) x\|=\|G(T x)\| \leq\|G\|\|T x\| \leq\|G\|\|T\|\|x\| \leq\|G\|\|T\| .
$$

Therefore $\|G \circ T\| \leq\|G\|\|T\|$.
3. Let $X=C[0,1]$ be the Banach space endowed with the sup-norm. Define the operator $T: X \rightarrow \mathbb{R}$ by $T f:=\int_{0}^{1} f(x) d x$ for $f \in X$. Find $\|T\|$.

Solution. For any $f \in X$, we have

$$
|T f|=\left|\int_{0}^{1} f(x) d x\right| \leq \int_{0}^{1}|f(x)| d x \leq \int_{0}^{1}\|f\|_{\infty} d x=\|f\|_{\infty}
$$

Hence $\|T\| \leq 1$.
On the other hand, if we let $g:[0,1] \rightarrow \mathbb{R}$ be given by $g(x)=1$ for $x \in[0,1]$, then $\|g\|_{\infty}=1$ and

$$
|T g|=\left|\int_{0}^{1} g(x) d x\right|=\left|\int_{0}^{1} 1 d x\right|=1
$$

Hence $\|T\| \geq 1$.
Therefore $\|T\|=1$.

