MMAT 5010 Linear Analysis Suggested Solution of Homework 2

1. Let X be a normed space. Show that the addition $(x, y) \in X \times X \mapsto x + y \in X$ and the scalar multiplication $(\alpha, x) \mapsto \alpha x \in X$ both are continuous maps, that is, whenever $x_n \to x$ and $y_n \to y$ in X and the scalars $\alpha_n \to \alpha$, we have $x_n + y_n \to x + y$ and $\alpha_n x_n \to \alpha x$.

Solution. Suppose $x_n \to x$ and $y_n \to y$ in X. Then $\lim_{n \to \infty} ||x_n - x|| = \lim_{n \to \infty} ||y_n - y|| = 0$. Since

$$||(x_n + y_n) - (x + y)|| \le ||x_n - x|| + ||y_n - y||$$
 for all $n \in \mathbb{N}$,

it follows from Squeeze Theorem that $\lim_{n\to\infty} ||(x_n + y_n) - (x + y)|| = 0$. That is $x_n + y_n \to x + y$.

Suppose $x_n \to x$ in X and the scalars $\alpha_n \to \alpha$. For $n \in \mathbb{N}$, we have

$$\|\alpha_n x_n - \alpha x\| = \|\alpha_n (x_n - x) + (\alpha_n - \alpha) x\| \le |\alpha_n| \|x_n - x\| + |\alpha_n - \alpha| \|x\|.$$

Since $\lim_{n \to \infty} (|\alpha_n| ||x_n - x|| + |\alpha_n - \alpha| ||x||) = |\alpha| \cdot 0 + 0 \cdot ||x|| = 0$, it follows from Squeeze Theorem that $\lim_{n \to \infty} ||\alpha_n x_n - \alpha x|| = 0$. That is $\alpha_n x_n \to \alpha x$.

2. Let X be a normed space. Show that X is a Banach space if and only if the unit sphere $S := \{x \in X : ||x|| = 1\}$ of X is complete, that is every Cauchy sequence (x_n) in S there is an element $x \in S$ such that $\lim_{x \to \infty} x_n = x$.

Solution. Suppose X is a Banach space. Let (y_n) be a Cauchy sequence in S. Then it is also a Cauchy sequence in X. Since X is complete, $y := \lim y_n$ exists in X. Note that $y \in S$ because S is closed. So, (y_n) is convergent in S. Thus, S is complete as desired.

Suppose S is complete. Let (x_n) be a Cauchy sequence in X. We may further assume that $\alpha_n := ||x_n|| \neq 0$. Otherwise, (x_n) converges to 0, and there is nothing to prove.

Since $|||x_n|| - ||x_m||| \le ||x_n - x_m||$, (α_n) is a Cauchy sequence in \mathbb{R} , hence is convergent to some $\alpha \ne 0$. In particular, there are m, M > 0 and $N \in \mathbb{N}$ such that

$$m \le \alpha_n = ||x_n|| \le M \quad \text{for } n \ge N.$$

Now $(\alpha_n^{-1}x_n)$ is a sequence in S that satisfies, for $n, m \ge N$,

$$\begin{aligned} \|\alpha_n^{-1}x_n - \alpha_m^{-1}x_m\| &\leq |\alpha_n^{-1}| \|x_n - x_m\| + |\alpha_n^{-1} - \alpha_m^{-1}| \|x_m\| \\ &\leq \frac{1}{m} \|x_n - x_m\| + M |\alpha_n^{-1} - \alpha_m^{-1}|. \end{aligned}$$

Thus $(\alpha_n^{-1}x_n)$ is a Cauchy sequence in *S*. By the completeness of *S*, there is $y \in S$ such that $\alpha_n^{-1}x_n \to y$. Finally it follows from the continuity of scalar multiplication that $x_n = \alpha_n \cdot \alpha_n^{-1}x_n \to \alpha y \in X$. Therefore *X* is a Banach space.