MMAT 5010 Linear Analysis Suggested Solution of Homework 2

1. Let X be a normed space. Show that the addition $(x, y) \in X \times X \mapsto x+y \in X$ and the scalar multiplication $(\alpha, x) \mapsto \alpha x \in X$ both are continuous maps, that is, whenever $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in X and the scalars $\alpha_{n} \rightarrow \alpha$, we have $x_{n}+y_{n} \rightarrow x+y$ and $\alpha_{n} x_{n} \rightarrow \alpha x$.

Solution. Suppose $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in X. Then $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}-y\right\|=$ 0 . Since

$$
\left\|\left(x_{n}+y_{n}\right)-(x+y)\right\| \leq\left\|x_{n}-x\right\|+\left\|y_{n}-y\right\| \quad \text { for all } n \in \mathbb{N}
$$

it follows from Squeeze Theorem that $\lim _{n \rightarrow \infty}\left\|\left(x_{n}+y_{n}\right)-(x+y)\right\|=0$. That is $x_{n}+y_{n} \rightarrow x+y$.
Suppose $x_{n} \rightarrow x$ in X and the scalars $\alpha_{n} \rightarrow \alpha$. For $n \in \mathbb{N}$, we have

$$
\left\|\alpha_{n} x_{n}-\alpha x\right\|=\left\|\alpha_{n}\left(x_{n}-x\right)+\left(\alpha_{n}-\alpha\right) x\right\| \leq\left|\alpha_{n}\right|\left\|x_{n}-x\right\|+\left|\alpha_{n}-\alpha\right|\|x\|
$$

Since $\lim _{n \rightarrow \infty}\left(\left|\alpha_{n}\right|\left\|x_{n}-x\right\|+\left|\alpha_{n}-\alpha\right|\|x\|\right)=|\alpha| \cdot 0+0 \cdot\|x\|=0$, it follows from Squeeze Theorem that $\lim _{n \rightarrow \infty}\left\|\alpha_{n} x_{n}-\alpha x\right\|=0$. That is $\alpha_{n} x_{n} \rightarrow \alpha x$.
2. Let X be a normed space. Show that X is a Banach space if and only if the unit sphere $S:=\{x \in X:\|x\|=1\}$ of X is complete, that is every Cauchy sequence $\left(x_{n}\right)$ in S there is an element $x \in S$ such that $\lim _{n} x_{n}=x$.

Solution. Suppose X is a Banach space. Let $\left(y_{n}\right)$ be a Cauchy sequence in S. Then it is also a Cauchy sequence in X. Since X is complete, $y:=\lim y_{n}$ exists in X. Note that $y \in S$ because S is closed. So, $\left(y_{n}\right)$ is convergent in S. Thus, S is complete as desired.
Suppose S is complete. Let $\left(x_{n}\right)$ be a Cauchy sequence in X. We may further assume that $\alpha_{n}:=\left\|x_{n}\right\| \nrightarrow 0$. Otherwise, $\left(x_{n}\right)$ converges to 0 , and there is nothing to prove.
Since $\mid\left\|x_{n}\right\|-\left\|x_{m}\right\|\|\leq\| x_{n}-x_{m} \|,\left(\alpha_{n}\right)$ is a Cauchy sequence in \mathbb{R}, hence is convergent to some $\alpha \neq 0$. In particular, there are $m, M>0$ and $N \in \mathbb{N}$ such that

$$
m \leq \alpha_{n}=\left\|x_{n}\right\| \leq M \quad \text { for } n \geq N
$$

Now $\left(\alpha_{n}^{-1} x_{n}\right)$ is a sequence in S that satisfies, for $n, m \geq N$,

$$
\begin{aligned}
\left\|\alpha_{n}^{-1} x_{n}-\alpha_{m}^{-1} x_{m}\right\| & \leq\left|\alpha_{n}^{-1}\right|\left\|x_{n}-x_{m}\right\|+\left|\alpha_{n}^{-1}-\alpha_{m}^{-1}\right|\left\|x_{m}\right\| \\
& \leq \frac{1}{m}\left\|x_{n}-x_{m}\right\|+M\left|\alpha_{n}^{-1}-\alpha_{m}^{-1}\right|
\end{aligned}
$$

Thus $\left(\alpha_{n}^{-1} x_{n}\right)$ is a Cauchy sequence in S. By the completeness of S, there is $y \in S$ such that $\alpha_{n}^{-1} x_{n} \rightarrow y$. Finally it follows from the continuity of scalar multiplication that $x_{n}=\alpha_{n} \cdot \alpha_{n}^{-1} x_{n} \rightarrow \alpha y \in X$. Therefore X is a Banach space.

