MMAT 5010 Linear Analysis
 Suggested Solution of Homework 1

1. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces. Let $X \oplus Y:=\{(x, y): x \in X ; y \in$ $Y\}$ denote the direct sum of X and Y. For each element $(x, y) \in X \oplus Y$, put $\|(x, y)\|_{1}:=\|x\|_{X}+\|y\|_{Y}$.
(a) Show that $\|\cdot\|_{1}$ is a norm function on $X \oplus Y$.
(b) Show that if X and Y are both Banach spaces then the space $X \oplus Y$ under the norm $\|\cdot\|_{1}$ is also a Banach space.

Solution. (a) Clearly $\|(x, y)\|_{1} \geq 0$ for any $(x, y) \in X \oplus Y$ and $\left\|\left(0_{X}, 0_{Y}\right)\right\|_{1}=0$, where $\left(0_{X}, 0_{Y}\right)$ is the zero vector in $X \oplus Y$. It remains to check that
(i) if $\|(x, y)\|_{1}=0$, then $x=0_{X}$ and $y=0_{Y}$;
(ii) $\|\alpha(x, y)\|_{1}=|\alpha|\|(x, y)\|_{1}$ for $\alpha \in \mathbb{K}$ and $x \in X, y \in Y$;
(iii) $\left\|\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right\|_{1} \leq\left\|\left(x_{1}, y_{1}\right)\right\|_{1}+\left\|\left(x_{2}, y_{2}\right)\right\|_{1}$ for $x_{1}, x_{2} \in X, y_{1}, y_{2} \in Y$.

For (i), $\|(x, y)\|_{1}=0 \Longrightarrow\|x\|_{x}+\|y\|_{Y}=0 \Longrightarrow\|x\|_{X}=\|y\|_{Y}=0$, hence $x=0_{X}$ and $y=0_{Y}$.
For (ii), $\|\alpha(x, y)\|_{1}=\|(\alpha x, \alpha y)\|_{1}=\|\alpha x\|_{X}+\|\alpha y\|_{Y}=|\alpha|\|x\|_{X}+|\alpha|\|y\|_{Y}=$ $\mid \alpha\|(x, y)\|_{1}$.
For (iii), $\left\|\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right\|_{1}=\left\|\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right\|_{1}=\left\|x_{1}+x_{2}\right\|_{X}+\left\|y_{1}+y_{2}\right\|_{Y} \leq$ $\left\|x_{1}\right\|_{X}+\left\|x_{2}\right\|_{X}+\left\|y_{1}\right\|_{Y}+\left\|y_{2}\right\|_{Y} \leq=\left\|\left(x_{1}, y_{1}\right)\right\|_{1}+\left\|\left(x_{2}, y_{2}\right)\right\|_{1}$.
(b) Let $\left(\left(x_{n}, y_{n}\right)\right)$ be a Cauchy sequence in $X \oplus Y$. Since $\left\|x_{n}\right\|_{X},\left\|y_{n}\right\|_{Y} \leq\left\|\left(x_{n}, y_{n}\right)\right\|_{1}$, $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences in X and Y respectively. As X, Y are Banach spaces, we have $\left(x_{n}\right)$ converges to some $x \in X$ and $\left(y_{n}\right)$ converges to some $y \in Y$, that is

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|_{X}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|y_{n}-y\right\|_{Y}=0
$$

Now, $\left(\left(x_{n}, y_{n}\right)\right)$ converges to (x, y) in $X \oplus Y$ because

$$
\left\|\left(x_{n}, y_{n}\right)-(x, y)\right\|_{1}=\left\|\left(x_{n}-x, y_{n}-y\right)=\right\| x_{n}-x\left\|_{X}+\right\| y_{n}-y \|_{Y}
$$

Therefore $\left(X \oplus Y,\|\cdot\|_{1}\right)$ is also a Banach space.
2. Let $\ell^{\infty}[0,1]:=\{f:[0,1] \rightarrow \mathbb{R}: f$ is a bounded function on $[0,1]\}$. Let

$$
\|f\|_{\infty}:=\sup _{x \in[0,1]}|f(x)|
$$

for $f \in \ell^{\infty}[0,1]$. Show that $\left(\ell^{\infty}[0,1],\|\cdot\|_{\infty}\right)$ is a Banach space.

Solution. It is straightforward to check that $\|\cdot\|_{\infty}$ is a norm on $\ell^{\infty}[0,1]$. It remains to show that $\left(\ell^{\infty}[0,1],\|\cdot\|_{\infty}\right)$ is complete.
Let $\left(f_{n}\right)$ be a Cauchy sequence in $\ell^{\infty}[0,1]$. Let $\varepsilon>0$. Then there exists $N \in \mathbb{N}$ such that $\left\|f_{n}-f_{m}\right\|_{\infty}<\varepsilon$ whenever $n, m \geq N$. In particular, for any $x \in[0,1]$,

$$
\begin{equation*}
\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty}<\varepsilon \quad \text { whenever } n, m \geq N . \tag{1}
\end{equation*}
$$

So, for any $x \in[0,1],\left(f_{n}(x)\right)$ is a Cauchy sequence in the complete space \mathbb{R}, and hence convergent in \mathbb{R}. Define a function $f:[0,1] \rightarrow \mathbb{R}$ by $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$. We will show that $\left(f_{n}\right)$ converges to f in $\ell^{\infty}[0,1]$. Indeed, by letting $m \rightarrow \infty$ in (1), we have

$$
\left|f_{n}(x)-f(x)\right| \leq \varepsilon \quad \text { for any } n \geq N \text { and } x \in[0,1] .
$$

In particular,

$$
|f(x)| \leq \varepsilon+\left|f_{N}(x)\right| \leq \varepsilon+\left\|f_{N}\right\|_{\infty} \quad \text { for any } x \in[0,1] .
$$

Thus $f \in \ell^{\infty}[0,1]$ and

$$
\left\|f_{n}-f\right\|_{\infty} \leq \varepsilon \quad \text { for any } n \geq N
$$

Therefore $\left(\ell^{\infty}[0,1],\|\cdot\|_{\infty}\right)$ is a complete normed space, that is a Banach space.

