MMAT 5010 Linear Analysis Suggested Solution of Homework 1

- 1. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces. Let $X \oplus Y := \{(x, y) : x \in X; y \in Y\}$ denote the direct sum of X and Y. For each element $(x, y) \in X \oplus Y$, put $\|(x, y)\|_1 := \|x\|_X + \|y\|_Y$.
 - (a) Show that $\|\cdot\|_1$ is a norm function on $X \oplus Y$.
 - (b) Show that if X and Y are both Banach spaces then the space $X \oplus Y$ under the norm $\|\cdot\|_1$ is also a Banach space.
 - **Solution.** (a) Clearly $||(x, y)||_1 \ge 0$ for any $(x, y) \in X \oplus Y$ and $||(0_X, 0_Y)||_1 = 0$, where $(0_X, 0_Y)$ is the zero vector in $X \oplus Y$. It remains to check that
 - (i) if $||(x, y)||_1 = 0$, then $x = 0_X$ and $y = 0_Y$;
 - (ii) $\|\alpha(x,y)\|_1 = |\alpha|\|(x,y)\|_1$ for $\alpha \in \mathbb{K}$ and $x \in X, y \in Y$;

(iii) $||(x_1, y_1) + (x_2, y_2)||_1 \le ||(x_1, y_1)||_1 + ||(x_2, y_2)||_1$ for $x_1, x_2 \in X, y_1, y_2 \in Y$. For (i), $||(x, y)||_1 = 0 \implies ||x||_x + ||y||_Y = 0 \implies ||x||_X = ||y||_Y = 0$, hence

 $x = 0_X \text{ and } y = 0_Y.$ For (ii), $\|\alpha(x, y)\|_1 = \|(\alpha x, \alpha y)\|_1 = \|\alpha x\|_X + \|\alpha y\|_Y = |\alpha| \|x\|_X + |\alpha| \|y\|_Y =$

 $\|\alpha\|(x,y)\|_1.$

For (iii), $\|(x_1, y_1) + (x_2, y_2)\|_1 = \|(x_1 + x_2, y_1 + y_2)\|_1 = \|x_1 + x_2\|_X + \|y_1 + y_2\|_Y \le \|x_1\|_X + \|x_2\|_X + \|y_1\|_Y + \|y_2\|_Y \le \|(x_1, y_1)\|_1 + \|(x_2, y_2)\|_1.$

(b) Let $((x_n, y_n))$ be a Cauchy sequence in $X \oplus Y$. Since $||x_n||_X$, $||y_n||_Y \le ||(x_n, y_n)||_1$, (x_n) and (y_n) are Cauchy sequences in X and Y respectively. As X, Y are Banach spaces, we have (x_n) converges to some $x \in X$ and (y_n) converges to some $y \in Y$, that is

$$\lim_{n \to \infty} \|x_n - x\|_X = 0 \text{ and } \lim_{n \to \infty} \|y_n - y\|_Y = 0.$$

Now, $((x_n, y_n))$ converges to (x, y) in $X \oplus Y$ because

$$||(x_n, y_n) - (x, y)||_1 = ||(x_n - x, y_n - y)| = ||x_n - x||_X + ||y_n - y||_Y.$$

Therefore $(X \oplus Y, \|\cdot\|_1)$ is also a Banach space.

2. Let $\ell^{\infty}[0,1] \coloneqq \{f : [0,1] \to \mathbb{R} : f \text{ is a bounded function on } [0,1]\}$. Let

$$||f||_{\infty} \coloneqq \sup_{x \in [0,1]} |f(x)|$$

for $f \in \ell^{\infty}[0,1]$. Show that $(\ell^{\infty}[0,1], \|\cdot\|_{\infty})$ is a Banach space.

Solution. It is straightforward to check that $\|\cdot\|_{\infty}$ is a norm on $\ell^{\infty}[0, 1]$. It remains to show that $(\ell^{\infty}[0, 1], \|\cdot\|_{\infty})$ is complete.

Let (f_n) be a Cauchy sequence in $\ell^{\infty}[0, 1]$. Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $\|f_n - f_m\|_{\infty} < \varepsilon$ whenever $n, m \ge N$. In particular, for any $x \in [0, 1]$,

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} < \varepsilon \quad \text{whenever } n, m \ge N.$$
(1)

So, for any $x \in [0,1]$, $(f_n(x))$ is a Cauchy sequence in the complete space \mathbb{R} , and hence convergent in \mathbb{R} . Define a function $f : [0,1] \to \mathbb{R}$ by $f(x) \coloneqq \lim_{n \to \infty} f_n(x)$. We will show that (f_n) converges to f in $\ell^{\infty}[0,1]$. Indeed, by letting $m \to \infty$ in (1), we have

$$|f_n(x) - f(x)| \le \varepsilon$$
 for any $n \ge N$ and $x \in [0, 1]$.

In particular,

$$|f(x)| \le \varepsilon + |f_N(x)| \le \varepsilon + ||f_N||_{\infty}$$
 for any $x \in [0, 1]$.

Thus $f \in \ell^{\infty}[0,1]$ and

$$||f_n - f||_{\infty} \le \varepsilon$$
 for any $n \ge N$.

Therefore $(\ell^{\infty}[0,1], \|\cdot\|_{\infty})$ is a complete normed space, that is a Banach space.

◀