MMAT 5010 Linear Analysis
 Suggested Solution of Homework 11

1. Let $T: \ell^{2} \rightarrow \ell^{2}$ be the right operator, that is $T\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right)$ for $\left(x_{1}, x_{2}, \ldots\right) \in \ell^{2}$. Find T^{*}.

Solution. For any $x=\left(x_{1}, x_{2}, \ldots\right), y=\left(y_{1}, y_{2}, \ldots\right) \in \ell^{2}$,

$$
\begin{aligned}
(T x, y) & =\left(\left(0, x_{1}, x_{2}, \ldots\right),\left(y_{1}, y_{2}, \ldots\right)\right) \\
& =\sum_{k=1}^{\infty} x_{k} \overline{y_{k+1}} \\
& =\left(\left(x_{1}, x_{2}, \ldots\right),\left(y_{2}, y_{3}, \ldots\right)\right) \\
& =(x, S y)
\end{aligned}
$$

where $S: \ell^{2} \rightarrow \ell^{2}$ is defined by $S\left(y_{1}, y_{2}, \ldots\right)=\left(y_{2}, y_{3}, \ldots\right)$. By Proposition 8.3, we have $T^{*}=S$.
2. Let X be a Hilbert space and let $T, S \in L(X)$. Show that
(a) $(T S)^{*}=S^{*} T^{*}$.
(b) if T is invertible, that is $T^{-1} \in L(X)$ exists, then $\left(T^{-1}\right)^{*}=\left(T^{*}\right)^{-1}$.

Solution. (a) For any $x, y \in X$,

$$
(T S x, y)=\left(S x, T^{*} y\right)=\left(x, S^{*} T^{*} y\right)
$$

By Proposition 8.3, we have $(T S)^{*}=S^{*} T^{*}$.
(b) The identity map $I: X \rightarrow X$ clearly satisfies $I^{*}=I$. By (a),

$$
T^{*}\left(T^{-1}\right)^{*}=\left(T T^{-1}\right)^{*}=I^{*}=I, \quad \text { and } \quad\left(T^{-1}\right)^{*} T^{*}=\left(T^{-1} T\right)^{*}=I^{*}=I
$$

Therefore, T^{*} is invertible and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.

