MMAT 5010 Linear Analysis
Suggested Solution of Homework 10

1. Let X be a Hilbert space and let {z,, : n =1,2,...} be an orthogonal subset of X.
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Show that the series Zxk is convergent in X, that is lim Zxk, if and only if
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Solution. Since {z, : n = 1,2,...} is an orthogonal subset of X, we have, for
m > n,
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By (%), <Z xk> is a Cauchy sequence in X if and only if (Z ||xk||2> is
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a Cauchy sequence in R. Since X is a Hilbert space, it is complete under the norm
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2. Let (e;)ier and (f;)jer be the orthonormal bases for the Hilbert spaces X and Y
respectively. If for each i € I, set T'(e;) = f;, show that T' can be extended to a
unitary operator from X to Y.

Solution. By Proposition 6.9, any x € X can be uniquely expressed as z =
Y icr(®, e;) xei, where (z,e;)x # 0 for only countably many 4, and the sum is con-
vergent.

For any =z € X, set
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which is convergent since Y, ; [(z,e;)x|* = [|z]|* < 00. So U : X — Y is a well-
defined map that is clearly linear.



If U(z) = U(2'), then by Proposition 6.9, we have (z,¢e;)x = (2/,¢;)x for all i € I,
and thus x = 2’. So U is injective.

Moreover, U is surjective because for any y = > .. (y, fi)v fi €Y, x0 = D>,/ (v, fi)vei €
X satisfies U(zg) = y.

Now U is a linear isomorphism from X to Y that clearly extends T'. It remains to
check that U preserves the inner products. Indeed, for any z,z’ € X,

(Ux,Ux)y = <Z(1’, ei)x fi, Z@?/a ;) x fi)y
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Therefore T' can be extended to a unitary operator U : X — Y. <



