MMAT 5010 Linear Analysis (2023-24): Homework 6

Important Notice:

\& The answer paper must be submitted before the deadline.

- The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

1. Let $X:=\mathbb{R}^{2}$ be a two dimensional real vector space and let A be the matrix $\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)$. Define a mapping $T: X \rightarrow X$ by $T x=A x$ for $x \in X$. Suppose that X is endowed with the $\|\cdot\|_{1}$-norm, that is $\|x\|_{1}:=\left|x_{1}\right|+\left|x_{2}\right|$ for $x=\binom{x_{1}}{x_{2}} \in X$. Find $\|T\|$.
2. Recall that c_{00} denotes the finite sequence space which is equipped with the $\|\cdot\|_{1}$-norm. Let $T: c_{00} \rightarrow c_{00}$ be the linear map given by

$$
T(x)(k):=k x(k)
$$

for $k=1,2 \ldots$ and $x \in c_{00}$. Show that T is a discontinuous map.
3. The left shift operator is given by $T: \ell^{2} \rightarrow \ell^{2}$ by $T\left(x_{1}, x_{2}, x_{3}, \ldots.\right):=\left(x_{2}, x_{3}, x_{4}, \ldots.\right)$ for $\left(x_{1}, x_{2}, ..\right) \in \ell_{2}$. Find $\|T\|$.

$$
* * * \operatorname{End} * * *
$$

