MMAT 5010 Linear Analysis (2023-24): Homework 3

Deadline: 17 Feb 2024

Important Notice:

- **4** The answer paper must be submitted before the deadline.
- ♠ The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.
 - 1. Let \mathbb{K}^n be a *n*-dimension column vector space. Let *A* be a $n \times n$ matrix. Show that the map $x \in \mathbb{K}^n \mapsto Ax \in \mathbb{K}^n$ is continuous with respect to any norm $\|\cdot\|$ defined on \mathbb{K}^n .
 - 2. Let X be a normed space. For each element $(x,y) \in X \oplus X$, put $\|(x,y)\|_1 := \|x\| + \|y\|$ and $\|(x,y)\|_{\infty} := \max(\|x\|,\|y\|)$. Show that $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are equivalent norms on $X \oplus X$.
 - 3. Show that if (x_n) is a convergent sequence in ℓ_1 , then it is also a convergent sequence with respect to the $\|\cdot\|_{\infty}$. Give an example of a sequence to show that the converse of this statement is not true.

*** Happy Year of Dragon***