Important Notice:

\& The answer paper must be submitted before the deadline.

- The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

1. Let X be a normed space. Show that the addition $(x, y) \in X \times X \mapsto x+y \in X$ and the scalar multiplication $(\alpha, x) \in \mathbb{R} \times X \mapsto \alpha x \in X$ both are continuous maps, that is, whenever $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in X and the scalars $\alpha_{n} \rightarrow \alpha$, we have $x_{n}+y_{n} \rightarrow x+y$ and $\alpha_{n} x_{n} \rightarrow \alpha x$.
2. Let X be a normed space. Show that X is a Banach space if and only if the unit sphere $S_{X}:=\{x \in X:\|x\|=1\}$ of X is complete, that is, every Cauchy sequence $\left(x_{n}\right)$ in S there is an element $x \in S$ such that $\lim _{n} x_{n}=x$.
