MMAT 5010 Linear Analysis (2023-24): Homework 1 Deadline: 26 Jan 2024

Important Notice:

 \clubsuit The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

- 1. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be the normed spaces. Let $X \oplus Y := \{(x, y) : x \in X; y \in Y\}$ denote the direct sum of X and Y. For each element $(x, y) \in X \oplus Y$, put $\|(x, y)\|_1 := \|x\|_X + \|y\|_Y$.
 - (a) Show that $\|\cdot\|_1$ is a norm function on $X \oplus Y$.
 - (b) Show that if X and Y both are Banach spaces then the space $X \oplus Y$ under the norm $\|\cdot\|_1$ is also a Banach space.
- 2. Let $\ell^{\infty}[0,1] := \{f : [0,1] \to \mathbb{R} : f \text{ is a bounded function on } [0,1]\}$. Let

$$||f||_{\infty} := \sup_{x \in [0,1]} |f(x)|$$

for $f \in \ell^{\infty}[0,1]$. Show that $(\ell^{\infty}[0,1], \|\cdot\|_{\infty})$ is a Banach space.

```
* * * End * * *
```