MATH5070

Homework 4 solution

1. (i) (\Longrightarrow) Suppose $\pi: E \rightarrow M$ is a trivial bundle with global trivialization $\Phi: E \rightarrow$ $M \times \mathbb{R}^{k}$. Let $\left\{e_{1}, \ldots, e_{k}\right\}$ be the standard basis of \mathbb{R}^{k}. We define $s_{i}: M \rightarrow E$ for each $i=1, \ldots, k$ as:

$$
s_{i}(p)=\Phi^{-1}\left(p, e_{i}\right) .
$$

It is easy to check s_{i} is a smooth section for each i. Since $\left\{e_{1}, \ldots, e_{k}\right\}$ is a basis of \mathbb{R}^{k} and $\left.\Phi\right|_{E_{p}}: E_{p} \rightarrow \mathbb{R}^{k}$ is linear isomorphism, $s_{1}(p), \ldots, s_{k}(p)$ form a basis of E_{p}. (\Longleftarrow) Suppose $\pi: E \rightarrow M$ admits global frame s_{1}, \ldots, s_{k}. For any $x \in E$, let $p=\pi(x)$, then $x \in E_{p}$. Since $\left\{s_{1}(p), \ldots, s_{k}(p)\right\}$ is a basis of E_{p}, x can be uniquely represented as $x=a_{1} s_{1}(p)+\cdots+a_{k} s_{k}(p)$. We define $\Phi: E \rightarrow M \times \mathbb{R}^{k}$ by

$$
\Phi(x)=\left(p, a_{1}, \ldots, a_{k}\right)
$$

Clearly Φ is a smoth diffeomorphism and $\Phi_{E_{p}}$ is a linear isomorphism.
(ii) Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis of $T_{e} G$. We claim that the left-invariant vector field V_{1}, \ldots, V_{k} is a global frame of $T G$, where $V_{i}(g)=\left.d L_{g}\right|_{e}\left(v_{i}\right)$ for any $g \in G$. It suffices to show that $V_{1}(g), \ldots, V_{k}(g)$ form a basis of $T_{g} G$. In fact, $L g: G \rightarrow G$ is a diffeomorphism, then $d L_{g}$ is a linear isomorphism. Thus $V_{1}(g), \ldots, V_{k}(g)$ form a basis of $T_{g} G$. By Q2(i), $T G$ is a trivial bundle.
2. Let $\left\{U_{\alpha}, \alpha \in I\right\}$ be an open covering of M, and for each $\alpha \in I$ let $\left\{s_{1}^{\alpha}, \ldots, s_{k}^{\alpha}\right\}$ ba a local frame. We define the inner product \langle,\rangle_{α} on $E_{U_{\alpha}}$ by $\left\langle s_{i}^{\alpha}(p), s_{j}^{\alpha}(p)\right\rangle=\delta_{i j}$ for any $p \in U_{\alpha}$. We can check that \langle,\rangle_{α} is smooth on E_{α}. Let $\left\{\rho_{\alpha}, \alpha \in I\right\}$ be a partition of unity subordinate to the above covering. Consider the sum $\sum \rho_{\alpha}\langle,\rangle_{\alpha}$. Firstly, it is well-defined by the local finiteness of partition of unity. Secondly, it is smooth since \langle,\rangle_{α} is smooth for any $\alpha \in I$. Finally, it suffices to show that $\sum \rho_{\alpha}\langle,\rangle_{\alpha}$ is a inner product. Symmetry and bilinearity follow directly from that of \langle,\rangle_{α}. Positive-definiteness follows from that of \langle,\rangle_{α} plus the fact that $\rho_{\alpha} \geq 0$ for all α and there exists at least one $\rho_{\alpha}(p)>0$ for any $p \in M$.
3. Let $\pi^{\prime}: E^{*} \rightarrow M$ be the dual bundle of $\pi: E \rightarrow M$, say it is of rank k. Since M is compact, we can choose the local trivializations $\Phi_{i}: \pi^{\prime-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{R}^{k}$ for $i=1, \ldots, r$ such that $\left\{U_{i}\right\}_{i=1}^{r}$ covers M. Let $\left\{\sigma_{1}^{i}, \ldots, \sigma_{k}^{i}\right\}$ be a local frame over each U_{i}. Let $\left\{\rho_{i}\right\}_{i=1}^{r}$ be a partition of unity subordinate to the above covering. We extend the section σ_{j}^{i} to a global section s_{j}^{i} as follows:

$$
s_{j}^{i}=\left\{\begin{array}{l}
\rho_{i}(p) \sigma_{j}^{i}(p) \quad p \in U_{i} \\
0 \quad p \in M \backslash \operatorname{supp} \rho_{i}
\end{array}\right.
$$

We rewrite these global sections as s_{1}, \ldots, s_{N}, and it can be checked that for every $p \in M, s_{1}(p), \ldots, s_{N}(p)$ span E_{p}^{*} by the property of partition of unity.
We define the map $\Psi: E \rightarrow M \times \mathbb{R}^{N}$ by:

$$
\Psi(v)=\left(\pi(v), s_{1}(\pi(v)) v, \ldots, s_{N}(\pi(v)) v\right)
$$

We see that $\left.\Psi\right|_{E_{p}}$ is linear since $s_{j}(p)$ is linear for all $j=1, \ldots, N$, and $\left.\Psi\right|_{E_{p}}$ is injective since $s_{1}(p), \ldots, s_{N}(p)$ span E_{p}^{*} for all p. Thus we can identify E with its image which is a subbundle of $M \times \mathbb{R}^{N}$.
4. By Q3, $E \rightarrow M$ is a subbundle of the trivial bundle $M \times \mathbb{R}^{N} \rightarrow M$. Choose an inner product on the trivial bundle. There is an orthogonal complement F_{p} of E_{p} for all $p \in M$. Take $F=\cup_{p \in M} F_{p}$, then $F \rightarrow M$ is a vector bundle such that $E \oplus F$ is the trivial bundle $M \times \mathbb{R}^{N} \rightarrow M$. To show that $F \rightarrow M$ is a vector bundle, we need to check the local trivializations. For any point $p \in M$, there exists an open neighborhood U of p which admits a local frame $\left\{s_{1}, \ldots, s_{k}\right\}$ for E. Then we can extend $\left\{s_{1}(p), \ldots, s_{k}(p)\right\}$ to a basis of \mathbb{R}^{N}, say $\left\{s_{1}(p), \ldots, s_{k}(p), s_{k+1}(p), \ldots, s_{N}(p)\right\}$. We define local section $s_{j}: U \rightarrow \mathbb{R}^{N}$ to be constant (i.e., $s_{j}(q)=s_{j}(p)$ for any $q \in U$) for $j=k+1, \ldots, N$. We can choose U to be small enough such that $\left\{s_{1}, \ldots, s_{k}, s_{k+1}, \ldots, s_{N}\right\}$ forms a local frame, and we use Gram-Schmidt's method to orthogonalize $\left\{s_{1}, \ldots, s_{k}, s_{k+1}, \ldots, s_{N}\right\}$. Then it gives us a local trivialization of $F \rightarrow M$. Also we can check the transition maps smoothly depends on $p \in M$.
5. $f^{*} E$ can be identified as a subspace of $M \times E$, that is $f^{*} E=\{(p, v) \in M \times E \mid$ $\pi(v)=f(p)\}$. The projection map $\pi^{\prime}: f^{*} E \rightarrow M$ is just the projection to the first component. Firstly, we need to find the local trivalization. For any point $p \in M$, there exists an open neighborhood U of $f(p)$ such that there exists a local trivialization $\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}$. $V=f^{-1}(U)$ is an open neiborhood of p. We define the map $\Psi:\left.f^{*} E\right|_{V} \rightarrow V \times \mathbb{R}^{k}$ by

$$
\Psi(p, v)=\left(p, \operatorname{proj}_{2}(\Phi(v))\right)
$$

where $\operatorname{proj}_{2}: U \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is the projection to the second component. Clearly, Ψ and its inverse Ψ^{-1} are smooth, where $\Psi^{-1}(p, w)=\left(p, \Phi^{-1}(f(p), w)\right)$. Then we need to show that the tansition maps smoothly depend on $p \in U_{1} \cap U_{2}$. Let $g: U_{1} \cap U_{2} \rightarrow G L\left(\mathbb{R}^{k}\right)$ is a transition function for N . Then $g \circ f: f^{-1}\left(U_{1}\right) \cap f^{-1}\left(U_{2}\right) \rightarrow G L\left(\mathbb{R}^{k}\right)$ is the transition function for $f^{*} E$, which is linear and smoothly depends on $f^{-1}(p) \in f^{-1}\left(U_{1}\right) \cap f^{-1}\left(U_{2}\right)$.
6. We use the notations in HW1. Firstly, we need to find the local trivializations. E can be written as $E=\left\{(V, v) \in M_{k}\left(\mathbb{R}^{n}\right) \times \mathbb{R}^{n} \mid v \in V\right\}$. $\left\{\mathcal{U}_{I}\right\}$ is an open covering of $M_{k}\left(\mathbb{R}^{n}\right)$ as in HW1. For any \mathcal{U}_{I},

$$
E_{\mathcal{U}_{I}}=\left\{(V, v) \in \mathcal{U}_{I} \times \mathbb{R}^{n} \mid v \in V\right\}=\left\{\left(A^{\#}, A^{\#} x\right) \mid A \in \mathcal{M}_{I}, x \in \mathbb{R}^{k}\right\}
$$

We define $\Psi: \mathcal{U}_{I} \times \mathbb{R}^{k} \rightarrow E_{\mathcal{U}_{I}}$ by

$$
\Psi\left(A^{\#}, x\right)=\left(A^{\#}, A^{\#} x\right)
$$

It can be checked that Ψ is bijective. Therefore, Ψ^{-1} gives a local trivialization over \mathcal{U}_{I}. It can also be checked that transition maps are linear and soomthly depend on $V \in M_{k}\left(\mathbb{R}^{n}\right)$.
7. By Q3, there exists an integer N such that $E \rightarrow M$ is a subbundle of the trivial bundle $M \times \mathbb{R}^{N} \rightarrow M$. For each $p \in M, E_{p}$ is a k-dimentional vector subspace of \mathbb{R}^{N}. We define $f: M \rightarrow M_{k}\left(\mathbb{R}^{N}\right)$ by $f(p)=E_{p}$, then $E=f^{*} E_{\text {can }}$.

