MATH5070

Homework 3 solution

1. (i) For any compact subinterval t lies in, there exist an integer $M>0$ such that $|t|<M$. Then

$$
\left\|\frac{t^{n} A^{n}}{n!}\right\| \leq \frac{\|A\|^{n}|t|^{n}}{n!}<\frac{\|A\|^{n} M^{n}}{n!}
$$

where the series $\sum_{n=0}^{\infty} \frac{\|A\|^{n} M^{n}}{n!}$ converges by ratio test. Therefore $\sum_{n=0}^{\infty} \frac{t^{n} A^{n}}{n!}$ converges uniformly by the Weierstrass M-test.
(ii) We first differentiate the series term by term, then we get

$$
\sum_{n=0}^{\infty} \frac{d}{d t}\left(\frac{t^{n} A^{n}}{n!}\right)=\sum_{n=1}^{\infty} \frac{t^{n-1} A^{n}}{(n-1)!}=\left(\sum_{n=1}^{\infty} \frac{t^{n-1} A^{n-1}}{(n-1)!}\right) A=A\left(\sum_{n=1}^{\infty} \frac{t^{n-1} A^{n-1}}{(n-1)!}\right)
$$

We have that $\sum_{n=1}^{\infty} \frac{t^{n-1} A^{n}}{(n-1)!}$ converges uniformly on the given subinterval by the same reason as (i). Therefore we finally show that

$$
\frac{d}{d t} \exp t A=(\exp t A) A=A(\exp t A)
$$

(iii) By (ii), we see that $\exp t A$ can be differentiated any number of times, thus it is smooth in t.
2. It suffices to show that v_{A} is complete. For any $x_{0} \in \mathbb{R}^{n}$, let $\gamma(t)=(\exp t A)\left(x_{0}\right)$. By Q1(iii), $\gamma(t)$ is smooth and $\gamma(0)=I_{n} x_{0}=x_{0}$.

$$
\frac{d}{d t} \gamma(t)=\left(\frac{d}{d t} \exp t A\right) x_{0}=A(\exp A t) x_{0}=A \gamma(t)=v_{A}(\gamma(t))
$$

Therefore $\gamma(t)$ is the integral curve of v_{A} through x_{0}, then v_{A} is complete.
3. Choose any $t \in \mathbb{R}$ and $x_{0} \in \mathbb{R}^{n}$. Let $x_{1}=(\exp t A) x_{0}$. Consider $\gamma_{1}(s)=(\exp s A) x_{1}=$ $(\exp s A)(\exp t A) x_{0}$ and $\gamma_{2}(s)=(\exp (t+s) A) x_{0}$. We see that $\gamma_{1}(0)=x_{1}$ and $\gamma_{2}(0)=x_{1}$ and both $\gamma_{1}(s)$ and $\gamma_{2}(s)$ are integral curve of v_{A}. By the uniqueness, we have that $\gamma_{1}(s)=(\exp s A)(\exp t A) x_{0}=(\exp (t+s) A) x_{0}=\gamma_{2}(s)$ for any t and x_{0}. Therefore, $(\exp s A)(\exp t A)=(\exp (t+s) A)$.
4. $\phi: \mathbb{R} \rightarrow G L(n)$ is a homomorphism, thus $\phi(0)=I_{n}$. Consider the derivative of ϕ,

$$
\phi^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{\phi(t+\Delta t)-\phi(t)}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{(\phi(\Delta t)-\phi(0)) \phi(t)}{\Delta t}=\phi^{\prime}(0) \phi(t) .
$$

Choose an arbitrary $x_{0} \in \mathbb{R}^{n}$. Define a curve $\gamma_{0}(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$ as $\gamma_{0}(t)=\phi(t) x_{0}$. We see that $\gamma_{0}(0)=x_{0}$ and

$$
\gamma_{0}^{\prime}(t)=\phi^{\prime}(t) x_{0}=\phi^{\prime}(0) \phi(t) x_{0}=\phi^{\prime}(0) \gamma_{0}(t)=v_{\phi^{\prime}(0)}\left(\gamma_{0}(t)\right)
$$

therefore $\gamma_{0}(t)$ is an integral curve of $v_{\phi^{\prime}(0)}$ passing through x_{0} at 0 . Meanwhile, $\gamma(t)=$ $\left(\exp t\left(\phi^{\prime}(0)\right)\right) x_{0}$ is an integral curve of $v_{\phi^{\prime}(0)}$ passing through x_{0} at 0 . By uniqueness, $\gamma_{0}(t)=\phi(t) x_{0}=\left(\exp t\left(\phi^{\prime}(0)\right)\right) x_{0}=\gamma(t)$ for any x_{0}. Therefore $\phi(t)=\exp t A$, where $A=\phi^{\prime}(0)$.
5. (i) \Rightarrow (ii) Choose any $x_{0} \in \mathbb{R}$ and $s \in \mathbb{R}$. Define two curves $\gamma_{1}(t)=(\exp t A)(\exp s B) x_{0}$ and $\gamma_{2}(t)=(\exp s B)(\exp t A) x_{0}$. We see that $\gamma_{1}(0)=\gamma_{2}(0)=(\exp s B) x_{0}$,

$$
\gamma_{1}^{\prime}(t)=A(\exp t A)(\exp s B) x_{0}=A \gamma_{1}(t)=v_{A}\left(\gamma_{1}(t)\right)
$$

and $\gamma_{2}^{\prime}(t)=(\exp s B) A(\exp t A) x_{0}=A(\exp s B)(\exp t A) x_{0}=A \gamma_{2}(t)=v_{A}\left(\gamma_{2}(t)\right)$.
So both $\gamma_{1}(t)$ and $\gamma_{2}(t)$ are integral curves of v_{A} passing through $(\exp s B) x_{0}$ at 0 . By uniqueness, $\gamma_{1}(t)=(\exp t A)(\exp s B) x_{0}=(\exp s B)(\exp t A) x_{0}=\gamma_{2}(t)$. Since x_{0} and s are arbitrary, we have $(\exp t A)(\exp s B)=(\exp s B)(\exp t A)$.
$($ ii $) \Rightarrow($ i $)$ By assumption, we have $(\exp t A)(\exp t B)=(\exp t B)(\exp t A)$. Differentiate this equation twice, then we have

$$
\begin{aligned}
& A^{2}(\exp t A)(\exp t B)+2 A(\exp t A)(\exp t B) B+(\exp t A)(\exp t B) B^{2} \\
& =(\exp t B)(\exp t A) A^{2}+2 B(\exp t B)(\exp t A) A+B^{2}(\exp t B)(\exp t A)
\end{aligned}
$$

Taking $t=0$ implies $A B=B A$.
(i) \Longleftrightarrow (iii)

$$
\begin{aligned}
{\left[v_{A}, v_{B}\right] } & =\sum_{i}\left(\left(\sum_{k}\left(\sum_{j} a_{k j} x_{j}\right) \frac{\partial}{\partial x_{k}}\right)\left(\sum_{l} b_{i l} x_{l}\right)-\left(\sum_{k}\left(\sum_{j} b_{k j} x_{j}\right) \frac{\partial}{\partial x_{k}}\right)\left(\sum_{l} a_{i l} x_{l}\right)\right) \frac{\partial}{\partial x_{i}} \\
& =\sum_{i}\left(\left(\sum_{k}\left(\sum_{j} a_{k j} x_{j}\right) b_{i k}\right)-\left(\sum_{k}\left(\sum_{j} b_{k j} x_{j}\right) a_{i k}\right)\right) \frac{\partial}{\partial x_{i}} \\
& =\sum_{i}\left(\left(\sum_{j} \sum_{k} a_{k j} b_{i k} x_{j}\right)-\left(\sum_{j} \sum_{k} b_{k j} a_{i k} x_{j}\right)\right) \frac{\partial}{\partial x_{i}} \\
& =\sum_{i}\left(\sum_{j}\left([B A]_{i j}-[A B]_{i j}\right) x_{j}\right) \frac{\partial}{\partial x_{i}} \\
& =\sum_{i}\left([(A B-B A) x]_{i}\right) \frac{\partial}{\partial x_{i}}
\end{aligned}
$$

Hence $\left[v_{A}, v_{B}\right]=0 \Longleftrightarrow A B=B A$.
6. $(\mathrm{i}) \Rightarrow($ ii $) x_{0}$ is an arbitrary point in \mathbb{R}^{n}.

$$
\begin{aligned}
\frac{d}{d t}\left\|(\exp t A) x_{0}\right\|^{2} & =\frac{d}{d t}\left\langle(\exp t A) x_{0},(\exp t A) x_{0}\right\rangle \\
& =\left\langle A(\exp t A) x_{0},(\exp t A) x_{0}\right\rangle+\left\langle(\exp t A) x_{0}, A(\exp t A) x_{0}\right\rangle \\
& =\left\langle\left(A+A^{T}\right)(\exp t A) x_{0},(\exp t A) x_{0}\right\rangle
\end{aligned}
$$

$A^{T}=-A$ implies that $\left\|(\exp t A) x_{0}\right\|^{2}$ is a constant. Let $t=0,\left\|(\exp t A) x_{0}\right\|^{2}=$ $\left\|x_{0}\right\|^{2}$. It follows $\left\|(\exp t A) x_{0}\right\|^{2}=x_{0}^{T}(\exp t A)^{T}(\exp t A) x_{0}=x_{0}^{T} x_{0}$ for any x_{0}. Therefore
$(\exp t A)^{T}(\exp t A)=I_{n}$, which means $\exp t A \in O(n)$ for all $t \in \mathbb{R}$.
$($ ii $) \Rightarrow($ i $)(\exp t A)^{T}(\exp t A)=I_{n}$ implies that $\left\|(\exp t A) x_{0}\right\|^{2}=\left\|x_{0}\right\|^{2}$ for all $t \in \mathbb{R}$. Therefore $\frac{d}{d t}\left\|(\exp t A) x_{0}\right\|^{2}=\left\langle\left(A+A^{T}\right)(\exp t A) x_{0},(\exp t A) x_{0}\right\rangle=0$. Since x_{0} is an arbitrary point and $\exp t A$ is invertible, we have $A+A^{T}=0$.
7. (i) It sufices to show that $[V, W]$ belongs to \mathcal{V}.

$$
\begin{aligned}
{[V, W] } & =\left(D_{V}(1)-D_{W}(x)\right) \frac{\partial}{\partial x}+\left(D_{V}(0)-D_{W}(1)\right) \frac{\partial}{\partial y}+\left(D_{V}(y)-D_{W}(x y+x)\right) \frac{\partial}{\partial z} \\
& =-\frac{\partial}{\partial x}+0 \cdot \frac{\partial}{\partial y}+(-y) \frac{\partial}{\partial z}=-W \in \mathcal{V}
\end{aligned}
$$

Hence \mathcal{V} is involutuve.
(ii) X and Y are linear independent, and $X=W, Y=V-x W$, thus X and Y span \mathcal{V}. For any point $p \in \mathbb{R}^{3}$, we have

$$
d \pi_{p}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

So $d \pi_{p}(X)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{\partial}{\partial x}$ and $d \pi_{p}(Y)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ x\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]=\frac{\partial}{\partial y}$.
(iii) For any $p=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$,

$$
\begin{aligned}
& \gamma_{p}^{1}=\left(x_{0}+t, y_{0}, z_{0}+y_{0} t\right) \\
& \gamma_{p}^{2}=\left(x_{0}, y_{0}+t, z_{0}+x_{0} t\right)
\end{aligned}
$$

are the integral curves of X and Y respectively.
(iv) For any $p=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$, the integral manifold of \mathcal{V} passing through p can be represented as a parametric surface in \mathbb{R}^{3} :
$(x, y, z)=G(s, t)=\gamma_{\gamma_{p}^{1}(t)}^{2}(s)=\gamma_{\left(x_{0}+t, y_{0}, z_{0}+y_{0} t\right)}^{2}(s)=\left(x_{0}+t, y_{0}+s, z_{0}+y_{0} t+x_{0} s+s t\right)$.
The surface can also be written as $z=x y+z_{0}-x_{0} y_{0}$. Therefore the integral manifolds of \mathcal{V} are $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z-x y=c, c \in \mathbb{R}\right\}$.

