MATH5070 Homework 3 solution

1. (i) For any compact subinterval t lies in, there exist an integer M > 0 such that |t| < M. Then

$$\left\|\frac{t^n A^n}{n!}\right\| \leq \frac{\|A\|^n |t|^n}{n!} < \frac{\|A\|^n M^n}{n!},$$

where the series $\sum_{n=0}^{\infty} \frac{\|A\|^n M^n}{n!}$ converges by ratio test. Therefore $\sum_{n=0}^{\infty} \frac{t^n A^n}{n!}$ converges
uniformly by the Weierstrass M-test.

(ii) We first differentiate the series term by term, then we get

$$\sum_{n=0}^{\infty} \frac{d}{dt} \left(\frac{t^n A^n}{n!} \right) = \sum_{n=1}^{\infty} \frac{t^{n-1} A^n}{(n-1)!} = \left(\sum_{n=1}^{\infty} \frac{t^{n-1} A^{n-1}}{(n-1)!} \right) A = A \left(\sum_{n=1}^{\infty} \frac{t^{n-1} A^{n-1}}{(n-1)!} \right).$$

We have that $\sum_{n=1}^{\infty} \frac{t^{n-1}A^n}{(n-1)!}$ converges uniformly on the given subinterval by the same reason as (i). Therefore we finally show that

$$\frac{d}{dt}\exp tA = (\exp tA)A = A(\exp tA).$$

- (iii) By (ii), we see that $\exp tA$ can be differentiated any number of times, thus it is smooth in t.
- 2. It suffices to show that v_A is complete. For any $x_0 \in \mathbb{R}^n$, let $\gamma(t) = (\exp tA)(x_0)$. By Q1(iii), $\gamma(t)$ is smooth and $\gamma(0) = I_n x_0 = x_0$.

$$\frac{d}{dt}\gamma(t) = (\frac{d}{dt}\exp tA)x_0 = A(\exp At)x_0 = A\gamma(t) = v_A(\gamma(t)).$$

Therefore $\gamma(t)$ is the integral curve of v_A through x_0 , then v_A is complete.

- 3. Choose any $t \in \mathbb{R}$ and $x_0 \in \mathbb{R}^n$. Let $x_1 = (\exp tA)x_0$. Consider $\gamma_1(s) = (\exp sA)x_1 = (\exp sA)(\exp tA)x_0$ and $\gamma_2(s) = (\exp(t+s)A)x_0$. We see that $\gamma_1(0) = x_1$ and $\gamma_2(0) = x_1$ and both $\gamma_1(s)$ and $\gamma_2(s)$ are integral curve of v_A . By the uniqueness, we have that $\gamma_1(s) = (\exp sA)(\exp tA)x_0 = (\exp(t+s)A)x_0 = \gamma_2(s)$ for any t and x_0 . Therefore, $(\exp sA)(\exp tA) = (\exp(t+s)A)$.
- 4. $\phi : \mathbb{R} \to GL(n)$ is a homomorphism, thus $\phi(0) = I_n$. Consider the derivative of ϕ ,

$$\phi'(t) = \lim_{\Delta t \to 0} \frac{\phi(t + \Delta t) - \phi(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{(\phi(\Delta t) - \phi(0))\phi(t)}{\Delta t} = \phi'(0)\phi(t).$$

Choose an arbitrary $x_0 \in \mathbb{R}^n$. Define a curve $\gamma_0(t) : \mathbb{R} \to \mathbb{R}^n$ as $\gamma_0(t) = \phi(t)x_0$. We see that $\gamma_0(0) = x_0$ and

$$\gamma_0'(t) = \phi'(t)x_0 = \phi'(0)\phi(t)x_0 = \phi'(0)\gamma_0(t) = v_{\phi'(0)}(\gamma_0(t)),$$

therefore $\gamma_0(t)$ is an integral curve of $v_{\phi'(0)}$ passing through x_0 at 0. Meanwhile, $\gamma(t) = (\exp t(\phi'(0)))x_0$ is an integral curve of $v_{\phi'(0)}$ passing through x_0 at 0. By uniqueness, $\gamma_0(t) = \phi(t)x_0 = (\exp t(\phi'(0)))x_0 = \gamma(t)$ for any x_0 . Therefore $\phi(t) = \exp tA$, where $A = \phi'(0)$.

5. (i) \Rightarrow (ii) Choose any $x_0 \in \mathbb{R}$ and $s \in \mathbb{R}$. Define two curves $\gamma_1(t) = (\exp tA)(\exp sB)x_0$ and $\gamma_2(t) = (\exp sB)(\exp tA)x_0$. We see that $\gamma_1(0) = \gamma_2(0) = (\exp sB)x_0$,

$$\gamma_1'(t) = A(\exp tA)(\exp sB)x_0 = A\gamma_1(t) = v_A(\gamma_1(t)),$$

and $\gamma'_{2}(t) = (\exp sB)A(\exp tA)x_{0} = A(\exp sB)(\exp tA)x_{0} = A\gamma_{2}(t) = v_{A}(\gamma_{2}(t)).$

So both $\gamma_1(t)$ and $\gamma_2(t)$ are integral curves of v_A passing through $(\exp sB)x_0$ at 0. By uniqueness, $\gamma_1(t) = (\exp tA)(\exp sB)x_0 = (\exp sB)(\exp tA)x_0 = \gamma_2(t)$. Since x_0 and s are arbitrary, we have $(\exp tA)(\exp sB) = (\exp sB)(\exp tA)$.

(ii) \Rightarrow (i) By assumption, we have $(\exp tA)(\exp tB) = (\exp tB)(\exp tA)$. Differentiate this equation twice, then we have

$$\begin{aligned} A^{2}(\exp tA)(\exp tB) &+ 2A(\exp tA)(\exp tB)B + (\exp tA)(\exp tB)B^{2} \\ &= (\exp tB)(\exp tA)A^{2} + 2B(\exp tB)(\exp tA)A + B^{2}(\exp tB)(\exp tA). \end{aligned}$$

Taking t = 0 implies AB = BA. (i) \iff (iii)

$$\begin{split} [v_A, v_B] &= \sum_i \left(\left(\sum_k (\sum_j a_{kj} x_j) \frac{\partial}{\partial x_k} \right) \left(\sum_l b_{il} x_l \right) - \left(\sum_k (\sum_j b_{kj} x_j) \frac{\partial}{\partial x_k} \right) \left(\sum_l a_{il} x_l \right) \right) \frac{\partial}{\partial x_i} \\ &= \sum_i \left(\left(\sum_k (\sum_j a_{kj} x_j) b_{ik} \right) - \left(\sum_k (\sum_j b_{kj} x_j) a_{ik} \right) \right) \frac{\partial}{\partial x_i} \\ &= \sum_i \left(\left(\sum_j \sum_k a_{kj} b_{ik} x_j \right) - \left(\sum_j \sum_k b_{kj} a_{ik} x_j \right) \right) \frac{\partial}{\partial x_i} \\ &= \sum_i \left(\sum_j ([BA]_{ij} - [AB]_{ij}) x_j \right) \frac{\partial}{\partial x_i} \\ &= \sum_i \left([(AB - BA)x]_i \right) \frac{\partial}{\partial x_i}. \end{split}$$

Hence $[v_A, v_B] = 0 \iff AB = BA$.

6. (i) \Rightarrow (ii) x_0 is an arbitrary point in \mathbb{R}^n .

$$\frac{d}{dt} \|(\exp tA)x_0\|^2 = \frac{d}{dt} \langle (\exp tA)x_0, (\exp tA)x_0 \rangle$$

= $\langle A(\exp tA)x_0, (\exp tA)x_0 \rangle + \langle (\exp tA)x_0, A(\exp tA)x_0 \rangle$
= $\langle (A + A^T)(\exp tA)x_0, (\exp tA)x_0 \rangle.$

 $A^{T} = -A$ implies that $\|(\exp tA)x_{0}\|^{2}$ is a constant. Let t = 0, $\|(\exp tA)x_{0}\|^{2} = \|x_{0}\|^{2}$. It follows $\|(\exp tA)x_{0}\|^{2} = x_{0}^{T}(\exp tA)^{T}(\exp tA)x_{0} = x_{0}^{T}x_{0}$ for any x_{0} . Therefore

 $(\exp tA)^T(\exp tA) = I_n$, which means $\exp tA \in O(n)$ for all $t \in \mathbb{R}$. (ii) \Rightarrow (i) $(\exp tA)^T(\exp tA) = I_n$ implies that $\|(\exp tA)x_0\|^2 = \|x_0\|^2$ for all $t \in \mathbb{R}$. Therefore $\frac{d}{dt}\|(\exp tA)x_0\|^2 = \langle (A + A^T)(\exp tA)x_0, (\exp tA)x_0 \rangle = 0$. Since x_0 is an arbitrary point and $\exp tA$ is invertible, we have $A + A^T = 0$.

7. (i) It suffices to show that [V, W] belongs to \mathcal{V} .

$$[V,W] = (D_V(1) - D_W(x))\frac{\partial}{\partial x} + (D_V(0) - D_W(1))\frac{\partial}{\partial y} + (D_V(y) - D_W(xy+x))\frac{\partial}{\partial z}$$
$$= -\frac{\partial}{\partial x} + 0 \cdot \frac{\partial}{\partial y} + (-y)\frac{\partial}{\partial z} = -W \in \mathcal{V}$$

Hence \mathcal{V} is involutive.

(ii) X and Y are linear independent, and X = W, Y = V - xW, thus X and Y span \mathcal{V} . For any point $p \in \mathbb{R}^3$, we have

$$d\pi_p = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

So
$$d\pi_p(X) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{\partial}{\partial x} \text{ and } d\pi_p(Y) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{\partial}{\partial y}$$

(iii) For any $p = (x_0, y_0, z_0) \in \mathbb{R}^3$,

$$\gamma_p^1 = (x_0 + t, y_0, z_0 + y_0 t)$$

$$\gamma_p^2 = (x_0, y_0 + t, z_0 + x_0 t)$$

are the integral curves of X and Y respectively.

(iv) For any $p = (x_0, y_0, z_0) \in \mathbb{R}^3$, the integral manifold of \mathcal{V} passing through p can be represented as a parametric surface in \mathbb{R}^3 :

$$(x, y, z) = G(s, t) = \gamma_{\gamma_p^1(t)}^2(s) = \gamma_{(x_0+t, y_0, z_0+y_0t)}^2(s) = (x_0+t, y_0+s, z_0+y_0t+x_0s+st).$$

The surface can also be written as $z = xy + z_0 - x_0y_0$. Therefore the integral manifolds of \mathcal{V} are $S = \{(x, y, z) \in \mathbb{R}^3 \mid z - xy = c, c \in \mathbb{R}\}.$