MATH5070

Homework 2 solution

1. (a) Let $\gamma(t)=A+B t$, then $\gamma(t)$ satisfies that $\gamma(0)=A$ and $\gamma^{\prime}(0)=B$. It suffices to show that $d f_{A}(B)=(f \circ \gamma)^{\prime}(0)=A^{t} B+B^{t} A$.

$$
d f_{A}(B)=(f \circ \gamma)^{\prime}(0)=\lim _{t \rightarrow 0} \frac{(A+B t)^{t}(A+B t)-A^{t} A}{t}=\lim _{t \rightarrow 0} B^{t} B t+A^{t} B+B^{t} A=A^{t} B+B^{t} A
$$

(b) $f^{-1}\left(I_{n}\right)=\left\{A \mid A^{t} A=I_{n}\right\}=O(n)$. It suffices to show $d f_{A}$ is surjective. For any $C \in S_{y m}^{n}$, consider $\frac{1}{2} A C$, then

$$
d f_{A}\left(\frac{1}{2} A C\right)=\frac{1}{2} A^{t} A C+\frac{1}{2} C^{t} A^{t} A=\frac{1}{2} C+\frac{1}{2} C^{t}=C .
$$

(c) By regular value theorem, $O(n)=f^{-1}\left(I_{n}\right)$ has dimension $\operatorname{dim}\left(\mathcal{M}_{n}\right)-\operatorname{dim}\left(S y m_{n}\right)=$ $n^{2}-\frac{n(n+1)}{2}=\frac{n(n-1)}{2}$.
(d) We claim that $A \in \mathcal{M}_{n}$ is invertible if and only if A is a regular point. (\Rightarrow) If A is invertible, then for any $C \in \operatorname{Sym}_{n}$, we consider $\frac{1}{2}\left(A^{t}\right)^{-1} C$,

$$
d f_{A}\left(\frac{1}{2}\left(A^{t}\right)^{-1} C\right)=\frac{1}{2} A^{t}\left(A^{t}\right)^{-1} C+\frac{1}{2} C^{t} A^{-1} A=\frac{1}{2} C+\frac{1}{2} C^{t}=C .
$$

Thus $d f_{A}$ is surjective.
(\Leftarrow) If $d f_{A}$ is surjective, then there exists $B \in \mathcal{M}_{n}$ such that $A^{t} B+B^{t} A=I_{n}$. If A is not invertible, then there exists $x \neq 0 \in \mathbb{R}^{n}$ such that $A x=0$. Consider

$$
0<\|x\|^{2}=x^{t} I_{n} x=x^{t}\left(A^{t} B+B^{t} A\right) x=(A x)^{t} B x+(B x)^{t} A x=0
$$

which gives a contradiction!
Furthermore, $f(A)$ is invertible if and only if A is invertible, since $\operatorname{det}\left(A^{t} A\right)=$ $\operatorname{det}(A)^{2}$.
Therefore,
$\{$ Regular points $\}=\left\{A \mid A \in \mathcal{M}_{n}\right.$ is invertible $\}$
$\{$ Critical points $\}=\left\{A \mid A \in \mathcal{M}_{n}\right.$ is noninvertible $\}$
$\{$ Critical value $\}=\left\{A \mid A \in\right.$ Sym $_{n} \cap \operatorname{Im}(f)$ is noninvertible $\}$
$\{$ Regular value $\}=S y m_{n} \backslash\{$ Critical value $\}$
(e) It suffices to show that the set of non-invertible symmetric matrices in $S y m_{n}$ is measure zero. det : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is basically a nonzero polynomial, and the set of non-invertible symmetric matrices is the set of roots of det, which is measure zero.
2. It suffices to show that both ι and $d \iota_{p}$ for all p are injective. If there exists p and q such that $\iota(p)=\iota(q)$, then

$$
\left(\rho_{1}(p) \varphi_{1}(p), \ldots, \rho_{r}(p) \varphi_{r}(p), \rho_{1}(p), \ldots, \rho_{r}(p)\right)=\left(\rho_{1}(q) \varphi_{1}(q), \ldots, \rho_{r}(q) \varphi_{r}(q), \rho_{1}(q), \ldots, \rho_{r}(q)\right)
$$

There exists some i such that $\rho_{i}(p)=\rho_{i}(q) \neq 0 . \quad \rho_{i}(p) \varphi_{i}(p)=\rho_{i}(q) \varphi_{i}(q)$ implies $\varphi_{i}(p)=\varphi_{i}(q)$ which contradicts that φ_{i} is a homeomorphism.
Given any $p \in M$, there exists i such that $\rho_{i}(p) \neq 0$. If there exists $v \neq 0 \in \mathbb{R}^{n}$ such that $d \iota_{p}(v)=0$, then $d\left(\psi_{i}\right)_{p}(v)=0$ and $d\left(\rho_{i}\right)_{p}(v)=0$, where $d\left(\psi_{i}\right)_{p}(v)=$ $\rho_{i}(p) d\left(\varphi_{i}\right)_{p}(v)+d\left(\rho_{i}\right)_{p}(v) \varphi_{i}(p)$. Since $\rho_{i}(p) \neq 0$, we have $d\left(\varphi_{i}\right)_{p}(v)=0$ which contradicts φ_{i} is a homeomorphism.
3. (Optional) There exists $F: J \rightarrow I$ such that $\tilde{\gamma}=\gamma \circ F$ means

$$
\begin{array}{cc}
\tilde{\gamma}^{\prime}(t)=w_{\tilde{\gamma}(t)}=f(\tilde{\gamma}(t)) v_{\tilde{\gamma}(t)}= & f(\gamma(F(t))) v_{\gamma(F(t))} \\
(\gamma(F(t)))^{\prime}=\gamma^{\prime}(F(t)) F^{\prime}(t)= & F^{\prime}(t) v_{\gamma(F(t))}
\end{array}
$$

ODEs: $F^{\prime}(t)=f(\gamma(F(t)))$ and $F(0)=0$ has a unique solution, which shows the existence and uniqueness of $F(t)$. Since f is non-vanishing, $F^{\prime}(t)=f(\gamma(F(t)))$ implies $F(t)$ is monotone, thus there exists an inverse of $F(t)$. Therefore $F: I \rightarrow J$ must be a diffeomorphism.

