MATH5070

Homework 1 solution

1. (i) We use the notation in the following questions. Identify M with \mathcal{M}. Let f_{I} : $\mathbb{R}^{k \times n} \rightarrow \mathbb{R}, A \mapsto \operatorname{det}\left(A_{I}\right)$, which is continuous, then $\mathcal{M}_{I}=f_{I}^{-1}(\mathbb{R} \backslash\{0\})$ is an open set since $\mathbb{R} \backslash\{0\}$ is an open set. Therefore, $\mathcal{M}=\cup_{I} \mathcal{M}_{I}$ is an open set of a $k n$-dimensional vector space.
(ii) By definition.
2. $(i) \Longrightarrow$ (ii) A_{1} is E-equivalent to A_{2} means image $\left(A_{1}\right)=$ image $\left(A_{2}\right)$, i.e., the column space of A_{1} can be represented by linear combinations of column vectors of A_{2}. Therefore there exists matrix B such that $A_{1}=A_{2} B . B$ has to be invertible since $\operatorname{Rank}\left(A_{1}\right)=\operatorname{Rank}\left(A_{2}\right)$. $(i i) \Longrightarrow($ iii $)$ By the fact from linear algebra that any invertible matrix can be written in terms of a multiplication of a sequence of elementary matrices.
(iii) $\Longrightarrow(i)$ Multiplying elementary matrices on the right doesn't change the column space of a matrix.
3. (i) $\mathcal{M}_{I}=\mathcal{M} \cap \mathcal{M}_{I}$ and $\mathcal{M}_{\mathcal{I}}$ is an open set of $\mathbb{R}^{k \times n}$ as in Q 1 , thus \mathcal{M}_{I} is an open set of \mathcal{M}.
(ii) By the fact that any $n \times k$ matrix A is of rank k if and only if that there exists a $k \times k$ minor of A is invertible.
(iii) By Q2, any matrix which is E-equivalent to A is of the form $A B$ where B is an invertible $k \times k$ matrix. Also $(A B)_{I}=A_{I} B$, and $A_{I} B$ is invertible, therefore $A B \in \mathcal{M}_{I}$.
4. $A^{\#} \triangleq A A_{I}^{-1}$, and the uniqueness is due to the fact that inverse of a matrix is unique.
5. The map $\psi_{I}: W_{I} \rightarrow \mathcal{U}_{I}, A \mapsto[A]$ is bijective due to the existence and uniqueness of $A^{\#}$. The identification $\phi_{I}: W_{I} \cong \mathbb{R}^{k(n-k)}$ is defined by omitting the identity minor matrix in W_{I}. Then $\varphi_{I} \triangleq \phi_{I} \circ \psi_{I}^{-1}$.
6. The transition map $\varphi_{I_{2}} \circ \varphi_{I_{1}}^{-1}=\phi_{I_{2}} \circ \psi_{I_{2}}^{-1} \circ \phi_{I_{1}} \circ \phi_{I_{1}}^{-1}$ is basically a rational function, and rational function is smooth. Note that a rational function is any function which can be defined by a rational fraction such that both the numerator and the denominator are polynomials.
