MATH5070 Homework 1 solution

- 1. (i) We use the notation in the following questions. Identify M with \mathcal{M} . Let $f_I : \mathbb{R}^{k \times n} \to \mathbb{R}, A \mapsto det(A_I)$, which is continuous, then $\mathcal{M}_I = f_I^{-1}(\mathbb{R} \setminus \{0\})$ is an open set since $\mathbb{R} \setminus \{0\}$ is an open set. Therefore, $\mathcal{M} = \bigcup_I \mathcal{M}_I$ is an open set of a kn-dimensional vector space.
 - (ii) By definition.
- 2. (i) ⇒ (ii) A₁ is E-equivalent to A₂ means image(A₁)=image(A₂), i.e., the column space of A₁ can be represented by linear combinations of column vectors of A₂. Therefore there exists matrix B such that A₁ = A₂B. B has to be invertible since Rank(A₁)=Rank(A₂). (ii) ⇒ (iii) By the fact from linear algebra that any invertible matrix can be written in terms of a multiplication of a sequence of elementary matrices. (iii) ⇒ (i) Multiplying elementary matrices on the right doesn't change the column space of a matrix.
- 3. (i) $\mathcal{M}_I = \mathcal{M} \cap \mathcal{M}_I$ and $\mathcal{M}_{\mathcal{I}}$ is an open set of $\mathbb{R}^{k \times n}$ as in Q1, thus \mathcal{M}_I is an open set of \mathcal{M} .
 - (ii) By the fact that any $n \times k$ matrix A is of rank k if and only if that there exists a $k \times k$ minor of A is invertible.
 - (iii) By Q2, any matrix which is *E*-equivalent to *A* is of the form *AB* where *B* is an invertible $k \times k$ matrix. Also $(AB)_I = A_I B$, and $A_I B$ is invertible, therefore $AB \in \mathcal{M}_I$.
- 4. $A^{\#} \triangleq A A_I^{-1}$, and the uniqueness is due to the fact that inverse of a matrix is unique.
- 5. The map $\psi_I : W_I \to \mathcal{U}_I, A \mapsto [A]$ is bijective due to the existence and uniqueness of $A^{\#}$. The identification $\phi_I : W_I \cong \mathbb{R}^{k(n-k)}$ is defined by omitting the identity minor matrix in W_I . Then $\varphi_I \triangleq \phi_I \circ \psi_I^{-1}$.
- 6. The transition map $\varphi_{I_2} \circ \varphi_{I_1}^{-1} = \phi_{I_2} \circ \psi_{I_2}^{-1} \circ \phi_{I_1} \circ \phi_{I_1}^{-1}$ is basically a rational function, and rational function is smooth. Note that a rational function is any function which can be defined by a rational fraction such that both the numerator and the denominator are polynomials.