Homework 6 for MATH5070
Topology of Manifolds
Due Wednesday, Dec. 6

1. (Mayer-Vietoris) In Figure 1 below, all squares commute. The rows
are exact, and in the columns the image of every arrow is in the kernel
of the next arrow.
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Show that the Mayer-Vietoris sequence associated with Figure 1

S HR(CY) s B (Cy) s HR(Cy) — 2 HMY(C)) ——
is exact.

2. (The Five Lemma) In Figure 2 below, all the arrows commute. The
rows are exact and the vertical arrows «, 3, 0 and € are isomorphisms.
Show that the middle arrow, -, is an isomorphism
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3. (Poincaré Duality) Let M be an oriented n-dimensional manifold with
finite topology, i.e., M admits a finite good cover. From the pairing

H k(M) x H¥(M) - HY(M) - R

one gets a map

HY(M) — HFH(M)*.
Prove that this map is bijective.
Hint: Induction. Assume this is true if M admits a good cover by
N — 1 open sets, and prove that it is true if M admits a good cover
by N open sets. To go from N — 1 to N, use exercises 1 and 2.

4. (optional) (Cech versus De Rham) Prove De Rham’s theorem: If M
is a connected n-dimensional manifold with finite topology and U =
{U1,--- ,Un} is a good cover, then

HY (M) = H*(U,R).

Hint: Some strenuous diagram-chasing using the Weyl diagram be-
low.

Here, C* = C*(U, Q) and C* = C*(U,R). The vertical arrows are
d’s and the horizontal arrows are §’s. All columns are exact except the
left-hand column which is the usual De Rham complex, and all rows
are exact except the bottom one which is the usual Cech complex. All
arrows commute.
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—END—



