Homework 5 for MATH5070
 Topology of Manifolds

Due Wednesday, Nov. 15

1. Denote by $\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}\right)$ the coordinate functions on $\mathbb{R}^{2 n}$. Let

$$
\omega=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}
$$

(i) What is $d \omega$?
(ii) What is $\omega^{n}=\omega \wedge \cdots \wedge \omega$ (wedge n times)?
(iii) Let $X=\frac{\partial}{\partial x_{1}}+\cdots+\frac{\partial}{\partial x_{k}}$ where $k \leq n$. What is $\iota_{X} \omega$?
(iv) Let $\iota: \mathbb{R}^{2 n-2} \hookrightarrow \mathbb{R}^{2 n}$ be the embedded submanifold of $\mathbb{R}^{2 n}$ defined by $x_{n}=y_{n}=0$. What is $\iota^{*} \omega$?
(v) Let $\iota: \mathbb{R}^{n} \hookrightarrow \mathbb{R}^{2 n}$ be the embedded submanifold of $\mathbb{R}^{2 n}$ defined by $y_{1}=\cdots=y_{n}=0$. What is $\iota^{*} \omega$?
(vi) Let $\iota: \mathbb{T}^{n} \hookrightarrow \mathbb{R}^{2 n}$ be the embedded submanifold of $\mathbb{R}^{2 n}$ defined by $x_{i}^{2}+y_{i}^{2}=1$ for $1 \leq i \leq n$. What is $\iota^{*} \omega$?
2. Recall that S^{n} is a smooth submanifold of \mathbb{R}^{n+1}. For each $p \in S^{n}$, one can think of the tangent space $T_{p} S^{n}$ as the plane in \mathbb{R}^{n+1} that contains p and tangents to S^{n}. For each $a>0$, denote $S^{n}(a)$ the sphere in \mathbb{R}^{n+1} of radius a, centered at the origin.
(i) Assume X is a smooth vector field on S^{n} so that $\left\|X_{p}\right\|=1$ for all $p \in S^{n}$. Consider the map

$$
f_{t}: S^{n} \rightarrow \mathbb{R}^{n+1}, \quad p \mapsto p+t X_{p} .
$$

Prove that Image $\left(f_{t}\right) \subset S^{n}\left(\sqrt{1+t^{2}}\right)$. In what follows we regard f_{t} as a map from S^{n} to $S^{n}\left(\sqrt{1+t^{2}}\right)$.
(ii) Show that f_{t} is an orientation-preserving diffeomorphism for sufficiently small t.
(iii) Let ω be an n-form on \mathbb{R}^{n+1} defined as

$$
\omega=\sum_{i=1}^{n+1}(-1)^{i-1} x_{i} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n+1}
$$

Use (ii) to show that the function $I(t)=\int_{S^{n}\left(\sqrt{1+t^{2}}\right)} \omega$ is a polynomial of t.
(iv) Apply Stokes' theorem to show that $I(t)$ is a polynomial of t if and only if n is odd.
(v) Conclude that S^{n} admits a nowhere-vanishing vector field if and only if n is odd; and there is no Lie group structure on $S^{2 k}$.
3. In 3-dimensional vector calculus, the divergence theorem claims that for a region V with boundary S,

$$
\iiint_{V}(\nabla \cdot \vec{F}) d V=\iint_{S} \vec{F} \cdot \hat{n} d S
$$

and the Stokes' theorem claims that for a surface S with boundary C,

$$
\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S=\oint_{C} \vec{F} \cdot d \vec{r}
$$

Derive the two theorems as special cases of the Stokes' theorem for differential forms.
4. Suppose $f \in C^{\infty}(M), \omega \in \Omega^{k}(M)$, and X, X_{i} 's are smooth vector fields on M. Prove:
(i) $\mathcal{L}_{f X} \omega=f \mathcal{L}_{X} \omega+d f \wedge \iota_{X} \omega$
(ii) $\iota_{\left[X_{1}, X_{2}\right]} \omega=\mathcal{L}_{X_{1}} \iota_{X_{2}} \omega-\iota_{X_{2}} \mathcal{L}_{X_{1}} \omega$.
(iii) $\mathcal{L}_{\left[X_{1}, X_{2}\right]} \omega=\mathcal{L}_{X_{1}} \mathcal{L}_{X_{2}} \omega-\mathcal{L}_{X_{2}} \mathcal{L}_{X_{1}} \omega$.
(iv) $\left(\mathcal{L}_{X} \omega\right)\left(X_{1}, \cdots, X_{k}\right)=\mathcal{L}_{X}\left(\omega\left(X_{1}, \cdots, X_{k}\right)\right)-\sum_{i=1}^{k} \omega\left(X_{1}, \cdots, \mathcal{L}_{X} X_{i}, \cdots, X_{k}\right)$.
-END-

