Homework 4 for MATH5070

Topology of Manifolds

Due Wednesday, Nov. 1

- 1. A vector bundle $E \to M$ is a trivial bundle if it admits a global trivialization, i.e., there is a global smooth diffeomorphism $\Phi : E \to M \times \mathbb{R}^k$ so that for each $p, \Phi|_{E_p} : E_p \to \mathbb{R}^k \times \{p\}$ is a linear isomorphism. Prove:
 - (i) A vector bundle E is trivial if and only if it admits a global frame, i.e., k smooth sections s_1, \dots, s_k over M so that for each $p \in M$, $s_1(p), \dots, s_k(p)$ form a basis of E_p .
 - (ii) For any Lie group G, the tangent bundle TG is a trivial bundle.
- 2. An inner product on a vector bundle $E \to M$ is a map which assigns to each $p \in M$ an inner product \langle , \rangle_p on the fiber E_p . This inner product is smooth if for every pair of smooth sections s_1 and s_2 , the function $p \to \langle s_1(p), s_2(p) \rangle_p$ is smooth. Show that every vector bundle can be equipped with a smooth inner product.

Hint: Let $\{U_{\alpha}, \alpha \in I\}$ be an open covering of M, and for each $\alpha \in I$ let $\{s_1^{\alpha}, \dots, s_k^{\alpha}\}$ be a trivialization of $E_{U_{\alpha}}$. Then there is a unique inner product $\langle , \rangle_{\alpha}$ on $E_{U_{\alpha}}$ for which $s_1^{\alpha}(p), \dots, s_k^{\alpha}(p)$ is an orthonormal basis of E_p for all $p \in U_{\alpha}$. Let $\{\rho_{\alpha}, \alpha \in I\}$ be a partition of unity subordinate to the above covering. Show that the sum

$$\sum \rho_{\alpha}\langle \,, \rangle_{\alpha}$$

makes sense and defines an inner product on E.

- 3. If M is compact, show that every vector bundle $E \to M$ is a sub-bundle of the trivial bundle $M \times \mathbb{R}^N \to M$ for some large integer N.
 - *Hint*: Show that the dual bundle $E^* \to M$ admits a set of global section $s_1, \dots, s_N, N \ge \operatorname{rank} E$ such that for every $p \in M$, the vectors $s_1(p), \dots, s_N(p)$ span E_p^* .
- 4. Let M be a compact manifold and $E \to M$ a vector bundle over M. Show that that exists a vector bundle $F \to M$ having the property that the direct sum $E \oplus F$ is the trivial bundle $M \times \mathbb{R}^N \to M$.
- 5. ("Pull-backs" of vector bundles) Let M and N be manifolds and f: $M \to N$ a smooth map. Given a smooth vector bundle $E \to N$, let

$$f^*E_p = E_{f(p)}$$

for every point $p \in M$. Show that the vector bundle $f^*E \to M$ with fibers above is a smooth vector bundle.

6. ("Canonical bundle") Let $M_k(\mathbb{R}^n)$ be the Grassmannian of k-dimensional subspace of \mathbb{R}^n . Recall that a point p of $M_k(\mathbb{R}^n)$ is by definition a k-dimensional vector subspace E_p of \mathbb{R}^n . (To avoid confusing "points of $M_k(\mathbb{R}^n)$ " with "k-dimensional subspaces of \mathbb{R}^n ", we will use p, q, etc. for the former and E_p, E_q , etc. for the latter.) Let

$$E \to M_k(\mathbb{R}^n)$$

be the rank k vector bundle whose fiber at p is E_p . Prove that this is a smooth vector bundle. This bundle is called the *canonical bundle*.

Hint: HW#1, exercise 5.

7. Denote by E_{can} the canonical bundle on $M_k(\mathbb{R}^n)$. Let M be a compact manifold and $E \to M$ a rank k vector bundle. Show that there exists an integer N and a smooth map

$$f: M \to M_k(\mathbb{R}^N)$$

such that

$$E = f^* E_{can}$$
.

Hint: Exercise 3.

8. (Optional) Suppose G is a Lie group with Lie algebra \mathfrak{g} . Define their centers by

$$Z(G) = \{ z \in G \mid gz = zg \text{ for all } g \in G \}$$

and

$$Z(\mathfrak{g}) = \{ X \in \mathfrak{g} \mid [X, Y] = 0 \text{ for all } Y \in \mathfrak{g} \}.$$

Show that

- (i) Z(G) is a Lie subgroup of G.
- (ii) $Z(\mathfrak{g})$ is a Lie subalgebra of \mathfrak{g} .
- (iii) The Lie algebra of Z(G) is $Z(\mathfrak{g})$.
- 9. (Optional) Let $G = SL(2, \mathbb{R})$. Prove:
 - (i) As smooth manifolds, G is diffeomorphic to $S^1 \times \mathbb{R}^2$.
 - (ii) As Lie groups, G is not isomorphic to $S^1 \times \mathbb{R}^2$ (as a product Lie group).

—END—