Homework 3 for MATH5070
 Topology of Manifolds

Due Wednesday, Oct. 18

1. (i) Let A be an $n \times n$ matrix. Show that the infinite series

$$
\exp t A=I+t A+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\cdots
$$

converges uniformly on compact subintervals of the t-axis.
(ii) Show that $\exp t A$ is differentiable as a function of t and that

$$
\frac{d}{d t} \exp t A=(\exp t A) A=A(\exp t A)
$$

Hint: First show that if one differentiates the series above term by term, one gets a series which is uniformly convergent on compact intervals.
(iii) Conclude from (ii) that $\exp t A$ is smooth in t.
2. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix and let v_{A} be the vector field on \mathbb{R}^{n} :

$$
v_{A}=\sum\left(a_{i j} x_{j}\right) \frac{\partial}{\partial x_{i}}
$$

Show that v_{A} generates a global one-parameter group of diffeomorphisms of \mathbb{R}^{n}.
Hint: Let x_{0} be an arbitrary point of \mathbb{R}^{n}. Show that the curve

$$
t \rightarrow(\exp t A)\left(x_{0}\right),-\infty<t<\infty,
$$

is the (unique) integral curve of v_{A} passing through the point x_{0}.
3. From exercise 2 deduce that $(\exp s A)(\exp t A)=\exp (s+t) A$.
4. Let $G L(n)$ be the group of invertible $n \times n$ matrices and let $\phi: \mathbb{R} \rightarrow$ $G L(n)$ be a homomorphism of the additive group of real numbers into $G L(n)$. Assuming ϕ is smooth, prove that there exists a $n \times n$ matrix, A, such that $\phi(t)=\exp t A$ for all t.
5. Let A and B be $n \times n$ matrices. Prove that the following properties are equivalent:
(i) A and B commute (as matrices).
(ii) $\exp t A$ and $\exp s B$ commute for all s and t.
(iii) The Lie bracket of v_{A} and v_{B} is zero.
6. Let A be an $n \times n$ matrix. Prove that the following properties are equivalent:
(i) The transpose of A is $-A$.
(ii) $\exp t A$ is in $O(n)$ for all $t \in \mathbb{R}$.
7. Consider the distribution \mathcal{V} in \mathbb{R}^{3} spanned by

$$
V=x \frac{\partial}{\partial x}+\frac{\partial}{\partial y}+x(y+1) \frac{\partial}{\partial z}, W=\frac{\partial}{\partial x}+y \frac{\partial}{\partial z}
$$

(i) Show that \mathcal{V} is involutive.
(ii) Consider the projection map $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2},(x, y, z) \mapsto(x, y)$. Show that

$$
X=\frac{\partial}{\partial x}+y \frac{\partial}{\partial z}, Y=\frac{\partial}{\partial y}+x \frac{\partial}{\partial z}
$$

are the vector fields spanning \mathcal{V} that are π-related to $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$.
(iii) Find the integral curves of X and Y respectively.
(iv) What are the integral manifolds of \mathcal{V} ?
-END-

