# Homework 1 for MATH5070 <br> Topology of Manifolds 

Due Wednesday, Sept. 20

The goal of the exercises below is to show that the set of all $k$-dimensional subspace of $\mathbb{R}^{n}$ is a manifold of dimension $k(n-k)$.

1. (i) For $0<k<n$ let $M$ be the set of all injective linear mappings of $\mathbb{R}^{k}$ into $\mathbb{R}^{n}$. Show that $M$ is a $k n$-dimensional manifold. Hint: It's an open subset of a $k n$-dimensional vector space.
(ii) Define $E$ to be the set of all pairs, $\left(L_{1}, L_{2}\right) \in M \times M$ with Image $L_{1}$ $=\operatorname{Image} L_{2}$. Show that $E$ is an equivalence relation. What are the equivalence classes?

Let $M_{E}$ be the set of equivalence classes. I want you to show that $M_{E}$ is a $k(n-k)$-dimensional manifold. Here are some hints:
2. Let $\mathcal{M}$ be the set of real $n \times k$ matrices of rank $k$. Identify $\mathcal{M}$ with $M$. If $A_{1}$ and $A_{2}$ are elements of $\mathcal{M}$ show that the following three conditions are equivalent
(i) $A_{1}$ is $E$-equivalent to $A_{2}$.
(ii) There exists an invertible $k \times k$ matrix, $B$, such that $A_{1}=A_{2} B$.
(iii) $A_{1}$ can be obtained from $A_{2}$ by a sequence of elementary column operations.
3. Let $I=\left(i_{1}, i_{2}, \cdots, i_{k}\right)$ be a $k$-tuple of integers with $1 \leq i_{1}<i_{2}<\cdots<$ $i_{k} \leq n$. For $A \in \mathcal{M}$ let $A_{I}$ be $k \times k$ minor of $A$ whose rows are the $i_{1}{ }^{\text {th }}, i_{2}{ }^{-{ }^{\text {th }}}, \cdots, i_{k^{-t}}$ rows of $A$. Let

$$
\mathcal{M}_{I}=\left\{A \in \mathcal{M}, \quad A_{I} \text { is invertible }\right\} .
$$

Prove:
(i) $\mathcal{M}_{I}$ is an open subset of $\mathcal{M}$.
(ii) $\mathcal{M}=\bigcup \mathcal{M}_{I}$.
(iii) If $A$ is in $\mathcal{M}_{I}$, then every matrix which is $E$-equivalent to $A$ is in $\mathcal{M}_{I}$.
4. Prove the following Lemma: If $A$ is in $\mathcal{M}_{I}$, then there exists a unique matrix $A^{\#}$ in $\mathcal{M}_{I}$ which is $E$-equivalent to $A$ and has the property that $A_{I}^{\#}$ is the identity matrix.
5. Given $A \in \mathcal{M}$ let $[A]$ be its equivalence class in $M_{E}$. Set

$$
\mathcal{U}_{I}=\left\{[A], \quad A \in \mathcal{M}_{I}\right\}
$$

and define a bejective map

$$
\varphi_{I}: \mathcal{U}_{I} \rightarrow \mathbb{R}^{k(n-k)}
$$

as follows. Let $W_{I}$ be the set of $n \times k$ matrices, $A$, for which $A_{I}$ is the $k \times k$ identity matrix; and, using the results of problem 4 prove:

Lemma $\quad W_{I}$ is contained in $\mathcal{M}_{I}$ and the map

$$
\begin{equation*}
W_{I} \rightarrow \mathcal{U}_{I}, \quad A \rightarrow[A] \tag{1}
\end{equation*}
$$

is bijective.

Now show that there is a (simple and natural) identification

$$
\begin{equation*}
W_{I} \simeq \mathbb{R}^{k(n-k)} \tag{2}
\end{equation*}
$$

and compose (2) with the inverse of (1).
6. Let $\mathcal{A}$ be the collection of charts $\left(\varphi_{I}, \mathcal{U}_{I}, \mathbb{R}^{k(n-k)}\right)$. Verify that this is an atlas by computing the transition maps associated with any pairs of charts in this collection and verifying that they are smooth.
—END-

