Exercise 9

Standard notations are in force. Many problems are taken from $[R]$.
(1) Consider $L^{p}\left(\mathbb{R}^{n}\right)$ with the Lebesgue measure, $0<p<\infty$. Show that $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$ holds $\forall f, g$ implies that $p \geq 1$. Hint: For $0<p<1, x^{p}+y^{p} \geq(x+y)^{p}$.
(2) Consider $L^{p}(\mu), 0<p<1$. Then $\frac{1}{q}+\frac{1}{p}=1, q<0$.
(a) Prove that $\|f g\|_{1} \geq\|f\|_{p}\|g\|_{q}$.
(b) $f_{1}, f_{2} \geq 0 .\|f+g\|_{p} \geq\|f\|_{p}+\|g\|_{p}$.
(c) $d(f, g) \stackrel{\text { def }}{=}\|f-g\|_{p}^{p}$ defines a metric on $L^{p}(\mu)$.
(3) Let X be a metric space consisting of infinitely many elements and μ a Borel measure on X such that $\mu(B)>0$ on any metric ball (i.e. $B=\left\{x: d\left(x, x_{0}\right)<\rho\right\}$ for some $x_{0} \in X$ and $\rho>0$. Show that $L^{\infty}(\mu)$ is non-separable.
Suggestion: Find disjoint balls $B_{r_{j}}\left(x_{j}\right)$ and consider $\chi_{B_{r_{j}}\left(x_{j}\right)}$.
(4) Show that $L^{1}(\mu)^{\prime}=L^{\infty}(\mu)$ provided (X, \mathfrak{M}, μ) is σ-finite, i.e., $\exists X_{j}, \mu\left(X_{j}\right)<\infty$, such that $X=\bigcup X_{j}$.

Hint: First assume $\mu(X)<\infty$. Show that $\exists g \in L^{q}(\mu), \forall q>1$, such that

$$
\Lambda f=\int f g d \mu, \quad \forall f \in L^{p}, p>1 .
$$

Next show that $g \in L^{\infty}(\mu)$ by proving the set $\{x:|g(x)| \geq M+\varepsilon\}$ has measure zero $\forall \varepsilon>0$. Here $M=\|\Lambda\|$.
(5) (a) For $1 \leq p<\infty,\|f\|_{p},\|g\|_{p} \leq R$, prove that

$$
\int\left||f|^{p}-|g|^{p}\right| d \mu \leq 2 p R^{p-1}\|f-g\|_{p}
$$

(b) Deduce that the map $f \mapsto|f|^{p}$ from $L^{p}(\mu)$ to $L^{1}(\mu)$ is continuous.

Hint: Try $\left|x^{p}-y^{p}\right| \leq p|x-y|\left(x^{p-1}+y^{p-1}\right)$.
(6) Optional. Let \mathfrak{M} be the collection of all sets E in the unit interval $[0,1]$ such that either E or its complement is at most countable. Let μ be the counting measure on this σ-algebra
\mathfrak{M}. If $g(x)=x$ for $0 \leq x \leq 1$, show that g is not \mathfrak{M}-measurable, although the mapping

$$
f \mapsto \sum x f(x)=\int f g d \mu
$$

makes sense for every $f \in L^{1}(\mu)$ and defines a bounded linear functional on $L^{1}(\mu)$. Thus $\left(L^{1}\right)^{*} \neq L^{\infty}$ in this situation.
(7) Optional. Let $L^{\infty}=L^{\infty}(m)$, where m is Lebesgue measure on $I=[0,1]$. Show that there is a bounded linear functional $\Lambda \neq 0$ on L^{∞} that is 0 on $C(I)$, and therefore there is no $g \in L^{1}(m)$ that satisfies $\Lambda f=\int_{I} f g d m$ for every $f \in L^{\infty}$. Thus $\left(L^{\infty}\right)^{*} \neq L^{1}$.
(8) Prove Brezis-Lieb lemma for $0<p \leq 1$.

Hint: Use $|a+b|^{p} \leq|a|^{p}+|b|^{p}$ in this range.
(9) Let $f_{n}, f \in L^{p}(\mu), 0<p<\infty, f_{n} \rightarrow f$ a.e., $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$. Show that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$.
(10) Suppose μ is a positive measure on $X, \mu(X)<\infty, f_{n} \in L^{1}(\mu)$ for $n=1,2,3, \ldots, f_{n}(x) \rightarrow$ $f(x)$ a.e., and there exists $p>1$ and $C<\infty$ such that $\int_{X}\left|f_{n}\right|^{p} d \mu<C$ for all n. Prove that

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f-f_{n}\right| d \mu=0
$$

Hint: $\left\{f_{n}\right\}$ is uniformly integrable.
(11) We have the following version of Vitali's convergence theorem. Let $\left\{f_{n}\right\} \subset L^{p}(\mu), 1 \leq p<$ ∞. Then $f_{n} \rightarrow f$ in L^{p}-norm if and only if
(i) $\left\{f_{n}\right\}$ converges to f in measure,
(ii) $\left\{\left|f_{n}\right|^{p}\right\}$ is uniformly integrable, and
(iii) $\forall \varepsilon>0, \exists$ measurable $E, \mu(E)<\infty$, such that $\int_{X \backslash E}\left|f_{n}\right|^{p} d \mu<\varepsilon$, $\forall n$.

I found this statement from PlanetMath. Prove or disprove it.
(12) Let $\left\{x_{n}\right\}$ be bounded in some normed space X. Suppose for Y dense in $X^{\prime}, \Lambda x_{n} \rightarrow \Lambda x$, $\forall \Lambda \in Y$ for some x. Deduce that $x_{n} \rightharpoonup x$.
(13) Consider $f_{n}(x)=n^{1 / p} \chi(n x)$ in $L^{p}(\mathbb{R})$. Then $f_{n} \rightharpoonup 0$ for $p>1$ but not for $p=1$. Here $\chi=\chi_{[0,1]}$.
(14) Let $\left\{f_{n}\right\}$ be bounded in $L^{p}(\mu), 1<p<\infty$. Prove that if $f_{n} \rightarrow f$ a.e., then $f_{n} \rightharpoonup f$. Is this result still true when $p=1$?
(15) The construction of Cantor diagonal sequence. Let f_{n} be a sequence of real-valued functions defined on some set and $\left\{x_{k}\right\}$ a subset of this set. Suppose that there is some M such that $\left|f_{n}\left(x_{k}\right)\right| \leq M$ for all n, k. Show that there is a subsequence $\left\{f_{n_{j}}\right\}$ satisfying $\lim _{j \rightarrow \infty} f_{n_{j}}\left(x_{k}\right)$ exists for each x_{k}.

