Exercise 6

Many problems are taken from $[\mathrm{R}]$.
(1) In the proof of Lusin's (Theorem 2.12) it was assumed that f is non-negative, bounded and A is compact. Complete the proof by showing the conclusion still holds when f is finite a.e. and A is of finite measure.
(2) Let μ be a Riesz measure on \mathbb{R}^{n}. Show that for every measurable function f, there exists a sequence of continuous function $\left\{f_{n}\right\}$ such that $f_{n} \rightarrow f$ almost everywhere.
(3) Here we construct a Cantor-like set, or a Cantor set with positive measure, by modifying the construction of the Cantor set as follows. Let $\left\{a_{k}\right\}$ be a sequence of positive numbers satisfying

$$
\gamma \equiv \sum_{k=1}^{\infty} 2^{k-1} a_{k}<1
$$

Construct the set \mathcal{S} so that at the k th stage of the construction one removes 2^{k-1} centrally situated open intervals each of length a_{k}. Establish the facts:
(a) $\mathcal{L}^{1}(\mathcal{S})=1-\gamma$,
(b) \mathcal{S} is compact and nowhere dense,
(c) \mathcal{S} is perfect and hence uncountable.

Note. A set A is perfect if for every $x \in A$ and $\varepsilon>0,\left(B_{\varepsilon}(x) \backslash\{x\}\right) \cap A \neq \phi$, that is, every point in A is an accumulation point of A. It is known that a perfect set must be uncountable.
(4) Let $0<\varepsilon<1$. Construct an open set $G \subset[0,1]$ which is dense in $[0,1]$ but $\mathcal{L}^{1}(G)=\varepsilon$.
(5) Let A be the subset of $[0,1]$ which consists of all numbers which do not have the digit 4 appearing in their decimal expansion. Find $\mathcal{L}^{1}(A)$.
(6) Let \mathcal{N} be a Vitali set in $[0,1]$. Show that $\mathcal{M}=[0,1] \backslash \mathcal{N}$ has measure 1 and hence deduce that

$$
\mathcal{L}^{1}(\mathcal{N})+\mathcal{L}^{1}(\mathcal{M})>\mathcal{L}^{1}(\mathcal{N} \cup \mathcal{M})
$$

(7) Let E be a subset of \mathbb{R} with positive Lebsegue measure. Prove that for each $\alpha \in(0,1)$, there exists an open interval I so that $\mathcal{L}^{1}(E \cap I) \geq \alpha \mathcal{L}^{1}(I)$. It shows that E contains almost
a whole interval. Hint: Choose an open G containing E such that $\mathcal{L}^{1}(E) \geq \alpha \mathcal{L}^{1}(G)$ and note that G can be decomposed into disjoint union of open intervals. One of these intervals satisfies our requirement.
(8) Let E be a measurable set in \mathbb{R} with respect to \mathcal{L}^{1} and $\mathcal{L}^{1}(E)>0$. Show that $E-E$ contains an interval ($-a, a$), $a>0$. Hint:
(a) U, V open, with finite measure, $x \mapsto \mathcal{L}^{1}((x+U) \cap V)$ is continuous on \mathbb{R}.
(b) A, B measurable, $\mu(A), \mu(B)<\infty$, then $x \mapsto \mathcal{L}^{1}((x+A) \cap B)$ is continuous. For $A \subset U, B \subset V$, try

$$
\left|\mathcal{L}^{1}((x+U) \cap V)-\mathcal{L}^{1}((x+A) \cap B)\right| \leq \mathcal{L}^{1}(U \backslash A)+\mathcal{L}^{1}(V \subset B) .
$$

(c) Finally, $x \mapsto \mathcal{L}^{1}((x+E) \cap E)$ is positive at 0 and if $(x+E) \cap E \neq \phi$, then $x \in E \backslash E$.
(9) Give an example of a continuous map ϕ and a measurable f such that $f \circ \phi$ is not measurable. Hint: The function $h=x+g(x)$ where g is the Cantor function is a continuous map from $[0,1]$ to $[0,2]$ with a continuous inverse.

