Fall 2023 MATH5011 Real Analysis I

Exercise 2

Notations in lecture notes are in use.

(1) Let g be a measurable function in $[0, \infty]$. Show that

$$m(E) = \int_E g \, d\mu$$

defines a measure on \mathcal{M} . Moreover,

$$\int_X f \, dm = \int_X f g \, d\mu, \qquad \forall f \text{ measurable in } [0, \infty].$$

(2) Let $\{f_k\}$ be measurable in $[0, \infty]$ and $f_k \downarrow f$ a.e., f measurable and $\int f_1 d\mu < \infty$. Show that

$$\lim_{k \to \infty} \int f_k \, d\mu = \int f \, d\mu.$$

What happens if $\int f_1 d\mu = \infty$?

- (3) Let f be a measurable function. Show that there exists a sequence of simple functions $\{s_j\}$, $|s_1| \leq |s_2| \leq |s_3| \leq \cdots$, and $s_k(x) \to f(x)$, $\forall x \in X$.
- (4) Let $\mu(X) < \infty$ and f be integrable. Suppose that

$$\frac{1}{\mu(E)} \int_{E} f \, d\mu \in [a, b], \ \forall E \in \mathcal{M}, \mu(E) > 0$$

for some [a, b]. Show that $f(x) \in [a, b]$ a.e.

(5) Let f be Lebsegue integrable on [a, b] which satisfies

$$\int_{a}^{c} f d\mathcal{L}^{1} = 0,$$

1

for every c. Show that f is equal to 0 a.e..

(6) Let $f \geq 0$ be integrable and $\int f d\mu = c \in (0, \infty)$. Prove that

$$\lim_{n \to \infty} \int n \log \left(1 + \left(\frac{f}{n} \right)^{\alpha} \right) d\mu = \begin{cases} \infty, & \text{if } \alpha \in (0, 1) \\ c, & \text{if } \alpha = 1 \\ 0, & \text{if } 1 < \alpha < \infty. \end{cases}$$

(7) Let $\mu(X) < \infty$ and $f_k \to f$ uniformly on X and each f_k is bounded. Prove that

$$\lim_{k \to \infty} \int f_k \, d\mu = \int f \, d\mu.$$

Can $\mu(X) < \infty$ be removed?

- (8) Give another proof of Borel-Cantelli lemma in Problem 7, Ex.1, by using integration theory. Hint: Study $g(x) = \sum_{j=1}^{\infty} \chi_{A_j}(x)$.
- (9) Let f be a Riemann integrable function on [a, b] and extend it to \mathbb{R} by setting it zero outside [a, b].
 - (a) Show that f is Lebsegue measurable.
 - (b) Show that the Riemann integral of f is equal to $\int_{\mathbb{R}} f d\mathcal{L}^1$.
 - (c) Give an example of a sequence of Riemann integrable functions which is uniformly bounded on [a, b] and converges pointwisely to some function which is not Riemann integrable.
- (10) Let f be integrable in (X, \mathcal{M}, μ) . Show that for each $\varepsilon > 0$, there is some δ such that

$$\int_{E} |f| < \varepsilon, \quad \text{ whenever } E \in \mathcal{M}, \ \mu(E) < \delta \ .$$

This is called the absolute continuity of an integrable function.