Exercise 10

- (1) Let \mathcal{L}^1 be the Lebesgue measure on (0,1) and μ the counting measure on (0,1). Show that $\mathcal{L}^1 \ll \mu$ but there is no $h \in L^1(\mu)$ such that $d\mathcal{L}^1 = h d\mu$. Why?
- (2) Let μ be a measure and λ a signed measure on (X,\mathfrak{M}) . Show that $\lambda \ll \mu$ if and only if $\forall \varepsilon > 0$, there is some $\delta > 0$ such that $|\lambda(E)| < \varepsilon$ whenever $|\mu(E)| < \delta$, $\forall E \in \mathfrak{M}$.
- (3) Let μ be a σ -finite measure and λ a signed measure on (X,\mathfrak{M}) satisfying $\lambda \ll \mu$. Show that

$$\int\!f\,d\lambda=\int\!fh\,d\mu,\quad\forall f\in L^1(\lambda),\ fh\in L^1(\mu)$$

where $h = \frac{d\lambda}{d\mu} \in L^1(\mu)$.

- (4) Let μ , λ and ν be finite measures, $\mu \gg \lambda \gg \nu$. Show that $\frac{d\nu}{d\mu} = \frac{d\nu}{d\lambda} \frac{d\lambda}{d\mu}$, μ a.e.
- (5) Show that the completion of $C_c(X)$ under the sup-norm is $C_0(X)$ where X is a locally compact, Hausdorff space.
- (6) Provide a proof of Proposition 5.8.
- (7) Show that M(X), the space of all signed measures defined on (X,\mathfrak{M}) , forms a Banach space under the norm $\|\mu\| = |\mu|(X)$.
- (8) Show that $M_r(X)$ is a closed subspace in M(X) on (X, \mathcal{B}) where X is a locally compact Hausdorff space. Hence it is a Banach space.