
Chapter 2

Outer Measures

There are two principal ways to construct measure spaces: By Caratheodory’s
approach via outer measures and by Riesz representation theorem on linear func-
tionals. In Section 1 we discuss outer measures and show there is always a mea-
sure space associated to an outer measure. Outer measures require less stringent
conditions than measures, so they are easier to construct. Next we study Borel
measures. These are measures in which continuous functions are measurable. We
will work on a topological space. Basic notions in point set topology and metric
spaces are reviewed and, Borel sets, the σ-algebra generated by open sets, are
discussed in Section 2. Sections 3 and 4 are devoted to the Riesz representa-
tion theorem. The setting is a locally compact Hausdorff topological space where
continuous functions are abundant. We prove the Riesz representation theorem
by constructing an outer measure for every positive functional. In Section 5 we
prove Lusin’s theorem, which is about how to approximate measurable functions
by continuous functions. Finally, in Section 6 we briefly discuss two classes of
special measurable function with respect to a Borel measure. These functions are
often used to approximate a general measurable function in various context.

2.1 Outer Measures

Let X be a non-empty set. An outer measure on X is a function µ from PX to
[0,∞] satisfying

(i) µ(ϕ) = 0,

(ii) (Countable Subadditivity)

µ(A) ≤
∞∑
j=1

µ(Aj) ,

whenever A ⊂ ∪∞
j=1Aj, Aj ⊂ X, j ≥ 1.
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Taking A1 = B and Aj = ϕ, j ≥ 2 in (ii), we have µ(A) ≤ µ(B) whenever A ⊂ B.

A well-known outer measure is the Lebesgue measure on R, which is defined
by

L1(A) = inf
{ ∞∑

j=1

|Ij| : All {Ij} satisfying A ⊂ ∪jIj

}
,

where Ij = [aj, bj], j ≥ 1, are closed intervals and |Ij| = bj − aj. It is readily
verified that L1 is an outer measure on R. The construction of the Lebesgue is
a typical one. It is worthwhile to generalize it in the following way. We call the
pair (G, φ) where G ⊂ PX and φ : G → [0,∞] a “gauge” if

(a) infG∈G φ(G) = 0, and

(b)
⋃

j Gj = X, for some {Gj} ⊂ G.

With a gauge, an outer measure can be defined as follows

µ(A) = inf

{
∞∑
j=1

φ(Gj) : A ⊂ ∪∞
j=1Gj, Gj ∈ G

}
.

To see how (i) is satisfied, observe that the empty set ϕ is contained in any G, so
by (a) µ(ϕ) = 0. Next, by (b) every set A can be covered by the countable union
of some Gj in G, so the set for which the infimum is taken is non-empty and
µ(A) is well-defined. Let A ⊂

⋃∞
j=1Aj. Suppose that

∑
j µ(Aj) < ∞ (otherwise

there is nothing to prove). For each ε > 0, we can find Gj
k, k ≥ 1, in G such that

Aj ⊂
⋃

kG
j
k and

∑
k φ(G

j
k) ≤ µ(Aj) + ε/2j. As {Gj

k} covers A, we have

µ(A) ≤
∑
j,k

φ(Gj
k)

≤
∑
j

∑
k

φ(Gj
k)

≤
∑
j

(
µ(Aj) +

ε

2j

)
≤

∑
j

µ(Aj) + ε,

and (ii) holds after letting ε tend to 0.

Given an outer measure µ, call a set E measurable w.r.t. µ, or µ-measurable,
or simply measurable when the context is clear if

µ(C) = µ(C ∩ E) + µ(C \ E), ∀C ⊂ X.
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By countable subadditivity, µ(C) ≤ µ(C ∩ E) + µ(C \ E) always holds. Thus
to establish the measurability of E it is sufficient to show that the one-sided
inequality µ(C) ≥ µ(C ∩E) + µ(C \E). Denote the collection of all measurable
sets by MC . We know that it contains at least two elements, namely, ϕ and X.
In fact, it forms an σ-algebra, and this is the content of the following theorem.

Theorem 2.1. MC is a σ-algebra and (X,MC , µ) forms a measure space.

Here we do not distinguish µ and its restriction on MC . This theorem is due
to Caratheodory and sometimes called Caratheodory’s construction of measures.
The subscript “C” in MC refers to his name.

Proof. First of all, from the definition of the measurability of a set we know that
the complement of E,E ′, is measurable whenever E is measurable. Next, we
claim that E1 ∪ E2 ∈ MC for E1, E2 ∈ MC . Indeed, for C ⊂ X,

µ(C) = µ(C ∩ E1) + µ(C \ E1)

= µ(C ∩ E1 ∩ E2) + µ(C ∩ E1 \ E2) + µ((C \ E1) ∩ E2) + µ((C \ E1) \ E2)

= µ(C ∩ E1 ∩ E2) + µ(C ∩ E1 ∩ E ′
2) + µ(C ∩ E ′

1 ∩ E2) + µ(C \ (E1 ∪ E2))

≥ µ(C ∩ (E1 ∪ E2)) + µ(C \ E1 ∪ E2),

where in the last step subadditivity has been used. Our claim holds.
By induction, for any n ≥ 2,

⋃n
j=1Ej ∈ MC , Ej ∈ MC .

Using E1

⋂
E2 =

(
E ′

1

⋃
E ′

2

)′
, and so on we know that

⋂n
j=1Ej ∈ MC for

Ej ∈ MC .
Now, given {Ej} , j ≥ 1, in MC , we want to show that

⋃∞
j=1Ej ∈ MC . We

assume Ej’s are mutually disjoint first. For C ⊂ X,

µ(C ∩ An) = µ(C ∩ An ∩ En) + µ(C ∩ An \ En)

= µ(C ∩ En) + µ(C ∩ An−1)

where

An =
n⋃

j=1

Ej ∈ M, and A =
∞⋃
j=1

Ej.

Repeating n many times, we get

µ(C ∩ An) =
n∑

j=1

µ(C ∩ Ej), (2.1)
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Using (2.1),

µ(C) = µ(C ∩ An) + µ(C \ An)

≥ µ(C ∩ An) + µ(C \ A)

=
n∑
1

µ(C ∩ Ej) + µ(C \ A).

Letting n→ ∞,

µ(C) ≥
∞∑
1

µ(C ∩ Ej) + µ(C \ A)

≥ µ(C ∩ A) + µ(C \ A),

whence A ∈ MC . Taking C = A in this inequality, we obtain

µ(A) ≥
∞∑
1

µ(Ej) whenever A =
∞⋃
j=1

Ej, Ej ∈ MC , are mutually disjoint.

We have shown that µ is countably additive and hence a measure on MC .
Finally, when Ej ∈ MC may not be disjoint, we set F1 = E1, F2 = E2 \

E1, F3 = E3 \
(
E1

⋃
E2

)
, · · · . Then Fj’s are mutually disjoint and belong to MC .

Using
⋃

j Ej =
⋃

j Fj, we conclude that
⋃

j Ej belongs to MC , so MC is closed
under countable union. The proof of Theorem 2.1 is completed.

A measure space (X,M, µ) is complete if every subset of a null set is measur-
able (and hence) a null set. It is a good exercise to show that every measure space
(X,M, µ) admits a completion (X,M, µ). In fact, M is the σ-algebra generated
by M and subsets N of null sets and µ(A ∪ N) = µ(A \ N) = µ(A). As long
as the Lebsegue measure is in concern, we know that the σ-algebra of Lebsegue
measurable sets is the completion of the Borel σ-algebra.

We point out that the measure space associated to an outer measure (X,MC , µ)
is always complete. To see this, let B be a subset of null set A. Let us verify

µ(C) ≥ µ(C ∩B) + µ(C \B), ∀C ⊂ X.

Indeed, from µ(C ∩B) ≤ µ(C ∩ A) and C \B ⊂ (C \ A) ∪ (A \B) we have

µ(C \B) ≤ µ(C \ A) + µ(A \B)

= µ(C \ A),
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so

µ(C) ≥ µ(C ∩ A) + µ(C \ A)
≥ µ(C ∩B) + µ(C \B).

Now, an interesting question arises. Given a complete measure space (X,M, µ),
it is clear that (M, µ) as a gauge and we can use it to define an outer measure
by

µ̃(E) = inf

{∑
j

µ(Ej) : E ⊂
⋃
j

Ej, Ej ∈ M

}
.

Let MC be the σ-algebra of µ̃-measurable sets. Is MC = M? Not quite, but we
have

Theorem 2.2. Let (X,M, µ) be a complete measure space and µ̃ and MC as
described above.

(a) M ⊂ MC and µ̃ = µ on M.

(b) M = MC provided (X,M, µ) is σ-finite.

A measure space is σ-finite if there exist Xj ∈ M, µ(Xj) < ∞, j ≥ 1, such
that X =

⋃∞
j=1Xj. The Lebesgue measure is σ-finite on R as R =

⋃
j[−j, j] and

L1([−j, j]) = 2j <∞.

Proof. First, µ̃ coincides with µ on M. For, let E ∈ M. Suppose that E ⊂⋃
j Ej, Ej ∈ M. Then

µ(E) ≤
∑
j

µ(Ej)

by countable subadditivity. Taking infimum over all these {Ej}, we have

µ(E) ≤ µ̃(E).

On the other hand, from E ⊂ E we have µ̃(E) ≤ µ(E).
Next, for E ∈ M, we wish to show

µ̃(C) ≥ µ̃(C ∩ E) + µ̃(C \ E), ∀C ⊂ X.

Clearly we could assume µ̃(C) < ∞. First observe from the definition of µ̃ that
we can find a descending family {An} in M such that C ⊂ An for each n and
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µ̃(C) = µ̃(A∞) where A∞ =
⋂∞

n=1An ∈ M. We have

µ̃(C) = µ̃(A∞)

= µ(A∞)

= µ(A∞ ∩ E) + µ(A∞ \ E)
= µ̃(A∞ ∩ E) + µ̃(A∞ \ E)
≥ µ̃(C ∩ E) + µ̃(C \ E),

done.
To show (b), assume that µ(X) < ∞ first. For E ∈ MC , there exists some

A ∈ M such that E ⊂ A and µ̃(E) = µ(A). Thus µ̃(A \ E) = µ(A)− µ̃(E) = 0.
Using the definition of µ̃ again, we can find some N ∈ M, A \ E ⊂ N satisfying
µ(N) = µ̃(A \E) = 0. It shows that A \E is a subset of a set of µ-measure zero.
By the completeness of µ, A \E is measurable, so is E as it can be expressed as
A \

(
A \ E

)
.

When X is σ-finite, we can find measurable sets Xj with finite measure such
that X = ∪jXj. For E ∈ MC , E ∩ Xj has finite measure for each j. By the
proof above, E ∩Xj ∈ M, so E = ∪j

(
E ∩Xj) ∈ M too.

2.2 Topological and Metric Spaces

A subset τ of PX is called a topology on X if it satisfies the following conditions:

(i) ϕ, X ∈ τ ,

(ii) Aα ∈ τ ⇒ ∪αAα ∈ τ , and

(iii) Aj ∈ τ, j = 1, . . . , N ⇒ ∩N
j=1Aj ∈ τ .

Note that in (ii) the union is taken over any index set, but in (iii) the intersection
must be over a finite set. Any element in τ is called an open set and the pair
(X, τ) is called a topological space. We recall

� F is called a closed set if its complement F ′ is open.

� X and ϕ are both open and closed.

� N is a neighborhood of x if there exists an open set G such that x ∈ G ⊂ N .

� x is an interior point of a set A ⊂ X if there exists an open set G such that
x ∈ G ⊂ A. Denote all interior points of A by A◦. It is the largest open set
contained in A. More precisely, A◦ contains all open subsets of A.

� For A ⊂ X, the closure of A, A, is the intersection of all closed sets con-
taining A. One can show that (A)′ = (A′)◦. The closure of A is the smallest
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closed set containing A. In other words, A is contained in any closed set
containing A. The boundary of A, ∂A, is given by A ∩ A′.

� The set A is compact if whenever A ⊂ ∪αGα for a family of open sets {Gα},
there exist α1, . . . , αN such that A ⊂ ∪N

j=1Gαj
.

We now consider metric spaces. A function d from X ×X → [0,∞) is called
a metric if it satisfies, for ∀x, y, z ∈ X,

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x),

(3) d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d) is called a metric space. The metric induces a topology on
X as follows. Call a set G open if for each x ∈ G, there exists Br(x) ⊂ G
where Br(x) = {y : d(y, x) < r} is the metric ball of radius r centered at x
{y : d(y, x) < r} . The collection of all open sets forms a topology on X. For
example, the standard topology in Rn is induced by the Euclidean metric.

Let (X, τ) be a topological space. We use B to denote the σ-algebra generated
by τ . Elements in B are called Borel sets. All open and closed sets are Borel
sets. There are more, for instance, a set A is called a Gδ-set if A =

⋂∞
j=1Gj, Gj

open and it is called an Fσ-set if A =
⋃∞

j=1 Fj, Fj closed. Both Gδ and Fσ sets
are Borel sets. For instance, the closed-open interval

[a, b) =
∞⋃
n=1

[a, b− 1

n
]

=
∞⋂
n=1

(a− 1

n
, b)

is a Fσ- and a Gδ-set in R at the same time. However, there are Gδ-sets which
are not Fσ-sets, and vice versa in R.

Proposition 2.3. Let (X,M, µ) be a measure space where X is a topological
space and B ⊂ M. Every continuous function f : X → R is measurable.

Proof. That f is continuous means f−1(G) is open for all open G ⊂ R. So
f−1(G) ∈ B ⊂ M.

A measure µ on a measure space (X,M, µ) is called a Borel measure if M
contains all Borel sets. An outer measure µ is called a Borel measure if µ is a
Borel measure on (X,MC , µ).
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The following Caratheodory’s criterion is very useful in verifying Borel mea-
surability when the underlying space is a metric space. It will be used in the next
chapter when we discuss Hausdorff measures.

Theorem 2.4 (Caratheodory’s Criterion). Let (X, d) be a metric space and
µ an outer measure on X satisfying

µ(A ∪B) = µ(A) + µ(B)

whenever dist(A,B) ≡ inf {d(x, y) : x ∈ A, y ∈ B} > 0. Then µ is a Borel
measure.

Note that MC may be larger than B. We know that this is the case for the
Lebesgue measure on R.

Proof. It suffices to show that all closed sets are measurable. Let A be closed.
We would like to show

µ(C) ≥ µ(C ∩ A) + µ(C \ A), ∀C ⊂ X.

As usual, we may assume µ(C) <∞. Let

An =

{
x ∈ X : d(x,A) ≤ 1

n

}
.

Then C ∩ A and C \ An have positive distance. We have

µ(C) ≥ µ(C ∩ A ∪ C \ An)

= µ(C ∩ A) + µ(C \ An).

Let

Rk =

{
x ∈ X :

1

k + 1
< d(x,A) ≤ 1

k

}
.

We claim that An = A∪∪∞
k=nRk. For, if x ∈ An satisfies d(x,A) = 0, then x ∈ A

because A is a closed set. On the other hand, if d(x,An) > 0, there exists some
k ≥ n such that x ∈ Rk. It follows that A = An \ ∪∞

k=nRk and

C \ A = (C \ An)
⋃(

C
⋂ ∞⋃

k=n

Rk

)
= (C \ An)

⋃( ∞⋃
k=n

(
Rk

⋂
C
))
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holds and therefore,

µ(C \ A) ≤ µ(C \ An) + µ
( ∞⋃
k=n

(
Rk

⋂
C
))

≤ µ(C \ An) +
∞∑
k=n

µ(Rk

⋂
C).

If we can show that
∞∑
k=1

µ(Rk

⋂
C) <∞, (2.2)

then
∑∞

k=n µ(Rk

⋂
C) → 0 as n→ ∞. As a result,

µ(C \ A) ≤ lim
n→∞

µ(C \ An) + lim
n→∞

∞∑
k=n

µ(Rk ∩ C)

≤ lim
n→∞

µ(C \ An),

and
µ(C) ≥ µ(C ∩ A) + lim

n→∞
µ(C \ An) ≥ µ(C ∩ A) + µ(C \ A),

the theorem follows.
To prove (2.2), we split the sum into

∞∑
k=1

µ(R2k

⋂
C) and

∞∑
k=1

µ(R2k+1

⋂
C).

We claim that the distance between Rk and Rk+2 is at least 1/(k+1)(k+2). For,
let y ∈ Rk+2. For ε > 0, there exists some z ∈ A such that d(y, z) ≤ 1/(k+2)+ε.
Using d(x, y) + d(y, z) ≥ d(x, z) ≥ d(x,A) ≥ 1/(k + 1), we have d(x, y) + ε ≥
1/(k + 1) − 1/(k + 2) = 1/(k + 1)(k + 2) > 0, and the claim follows by letting
ε→ 0. As the distance between any two of R2, R4, . . . , R2N is positive,

µ(
N⋃
k=1

R2k

⋂
C) =

N∑
k=1

µ(R2k

⋂
C).

Letting N → ∞,

∞∑
k=1

µ(R2k

⋂
C) =≤ µ

(
∞⋃
k=1

R2k

⋂
C

)
≤ µ(C) <∞.
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and similarly, one can show that

∞∑
k=1

µ(R2k+1

⋂
C) <∞.

2.3 Locally Compact Hausdorff Spaces

Two types of topological spaces are usually employed as the platform for per-
forming integration. The first is metric spaces and the second is locally compact
Hausdorff spaces. Both spaces have a large supply of continuous functions.

A topological space is a Hausdorff space if any two distinct points in it can
be separated by disjoint open sets, that is, for x ̸= y in X there exist open G1

and G2 containing x and y respectively such that G1 ∩ G2 = ϕ. A topological
space is locally compact if each point has a compact neighborhood N . We refer
to p.35-40, [R] for further information on topological spaces. For those who do
not want to go in topology, you may simply assume the topological space is a
Euclidean space Rn.

The following are two fundamental properties of a locally compact Hausdorff
space we will use from time to time.

Proposition 2.5. Let K ⊂ G where K is compact and G is open in a locally
compact Hausdorff space. Then there exists an open set V with V compact such
that K ⊂ V ⊂ V ⊂ G.

We will use the notation V ⊂⊂ G to denote the situation that V is compact
and contained in G.

Theorem 2.6 (Urysohn’s Lemma). Let K ⊂ G where G is open and K is
compact in a locally compact Hausdorff space. Then there exists a continuous
function f with compact support in G such that 0 ≤ f ≤ 1 in X and f ≡ 1 on
K.

Since a single point is a compact set, this proposition implies that for every
point x in an open set G, there always exists a continuous function compactly
supported in G and satisfies f(x) = 1. Proposition 2.5 and Theorem 2.6 are
proved in [R]. A simpler proof can be constructed when the space is Rn. In fact,
there are several versions of the Urysohn’s lemma and you may google for more
information.

The support of a function f defined to be

sptf ≡ {x : f(x) ̸= 0}.
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So it is a closed set by definition. Let x and y be two distinct points in X. Taking
K to be x and G to be the complement of y, one concludes from the Urysohn’s
lemma that there is always a continuous function which is equal to 1 at x and 0
at y. This demonstrates that there are many continuous functions in X.

The notation f < G means f ∈ Cc(X), 0 ≤ f ≤ 1, and sptf ⊂ G.
The following assertion on the partition of unity is a useful technical tool.

Theorem 2.7. Let X be a locally compact Hausdorff space and K ⊂
⋃N

j=1Gj

where K is compact and Gj’s are open. There exist φj < Gj, j = 1, · · · , N,
satisfying

∑N
j=1 φj ≡ 1 on K.

Proof. (Following [R]) For each x ∈ K, there is an open set Wx containing x
such that Wx is compact, and is contained in one of these Gj. There is a finite
covering of K by Wx1 , . . . ,Wxm . Let Hj be the union of all those Wxk

contained

in Gj. Then Hj is a compact set in Gj and K ⊂
N⋃
j=1

Hj. By Urysohn’s lemma,

there exist fj ∈ C(X), 0 ≤ fj ≤ 1, fj ≡ 1 on Hj and sptfj ⊂ Gj. We set

φ1 = f1

φ2 = (1− f1)f2
...

φN = (1− f1)(1− f2) · · · (1− fN−1)fN .

By a routine induction one can show that

φ1 + φ2 + · · ·+ φN = 1− (1− f1)(1− f2) · · · (1− fN),

so
∑N

1 φj ≡ 1 on K. Clearly, φj ∈ [0, 1] and spt φj ⊂ Gj.

2.4 Riesz Representation Theorem

We denote the set of all continuous functions with compact support in a topo-
logical space X by Cc(X). It carries the structure of a vector space. Recall that
a linear functional is a linear map from a vector space to R. A linear functional
Λ on Cc(X) is called positive if

Λf ≥ 0, ∀f ≥ 0 in Cc(X).

Given a Borel measure µ which is finite on compact sets, we can associate it with
a positive functional Λ on Cc(X) given by

f 7→
∫
fdµ.
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Indeed, let K be the support of f , we have∫
|f | dµ =

∫
K

|f |dµ

≤ sup
x

|f(x)|µ(K)

< ∞,

whence
∫
|f |dµ is finite. It shows that every function in Cc(X) is integrable. In

particular, Λ is finite on Cc(X). It is not at all clear that the construction can
be reversed. This is the content of the Riesz representation theorem. In fact, we
construct an outer measure from a positive functional as follows. Let G be an
open set in the locally compact Hausdorff space X. By Urysohn’s lemma there
exists at least one continuous function with values in [0, 1] compactly supported
in G. The set {f ∈ Cc(X) : f < G } is non-empty and we define

µ0(G) = sup
{
Λf : f < G

}
,

and µ0(ϕ) = 0. For E ⊂ X, define

µ(E) = inf
{
µ0(G) : E ⊂ G, G is open

}
.

Theorem 2.8 (Riesz Representation Theorem). Let X be a locally compact
Hausdorff space and Λ a positive linear functional on Cc(X). Then µ defined
above is a Borel (outer) measure which is finite on compact sets and

Λf =

∫
f dµ, ∀f ∈ Cc(X),

holds.

Proof. It is clear from the definition of µ0 that µ0(G1) ≤ µ0(G2) for open sets
G1, G2, G1 ⊂ G2. It follows from the definition of µ that µ coincides with µ0 on
open sets. We divide the proof of the representation theorem into four steps.

1. µ is an outer measure.

2. All Borel sets are µ-measurable.

3. µ is finite on compact sets.

4. Identifying Λ with the integral w.r.t. µ.

Step 1. Let E ⊂
⋃∞

j=1Ej, Ej ⊂ X, j ≥ 1. We claim

µ(E) ≤
∞∑
1

µ(Ej).
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We can assume
∑∞

1 µ(Ej) < ∞, for otherwise there is nothing to prove. For
ε > 0, there is some open Gj containing Ej such that

µ(Ej) +
ε

2j
≥ µ(Gj).

The set G =
⋃

j Gj is open and contains E. Let f < G and consider the compact

set K = sptf . There are finitely many Gj’s such that K ⊂
⋃N

j=1Gnj
. Let φj be

a partition of unity subordinate to {Gnj
}. Then

∑
j φj = 1 on K. We have

Λf =
N∑
1

Λ(fφj)

≤
N∑
j=1

µ(Gnj
) (since fφj < Gnj

)

≤
∞∑
j=1

µ(Gj)

≤
∞∑
j=1

µ(Ej) + ε.

Taking supremum over all these f ’s, we have

µ(E) ≤ µ(G)

= sup {Λf : f < G}

≤
∞∑
j=1

µ(Ej) + ε,

and claim follows by letting ε→ 0.

Step 2. It suffices to show for every open E,

µ(C) ≥ µ(C ∩ E) + µ(C \ E), ∀C ⊂ X.

From the definition of µ, it suffices to show, for every open E,

µ(G) ≥ µ(G ∩ E) + µ(G \ E), ∀ open G. (2.3)

For ε > 0, pick φ < G ∩ E such that

Λφ+ ε ≥ µ(G ∩ E).
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Let K ≡ sptφ ⊂ G ∩ E and ψ < G \K. Then φ+ ψ < G and

µ(G) ≥ Λ(φ+ ψ) = Λφ+ Λψ

≥ µ(G ∩ E)− ε+ Λψ.

Taking supremum over all ψ,

µ(G) ≥ µ(G ∩ E)− ε+ µ(G \K)

≥ µ(G ∩ E)− ε+ µ(G \ E)

and (2.3) holds after letting ε→ 0.

Step 3. We show that for every compact set K ,

µ(K) = inf {Λf : K < f} .

In particular, it implies that µ is finite on compact sets. Here {K < f} means
f ∈ Cc(X), 0 ≤ f ≤ 1 and f ≡ 1 on K. Such functions exist by Urysohn’s lemma.
For α ∈ (0, 1), Gα = {x : f(x) > α} is open and K ⊂ Gα. For any φ < Gα, we
have φ ≤ f/α. As µ(Gα) = supΛφ,

µ(K) ≤ µ(Gα) ≤
1

α
Λf.

Letting α ↑ 1, we obtain µ(K) ≤ Λf . By taking infimum over all f, f < K, we
have

µ(K) ≤ inf {Λf : K < f} .

On the other hand, for ε > 0, we can find an open set G containing K such that

µ(K) + ε ≥ µ(G).

By Urysohn’s lemma, there exists some φ1, K < φ1 < G. We have

µ(K) + ε ≥ µ(G) ≥ Λφ1,

which implies
µ(K) + ε ≥ inf {Λφ : K < φ} ,

and
µ(K) ≥ inf {Λφ : K < φ} ,

after letting ε ↓ 0.
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Step 4. (Following [R]) It suffices to show

Λf ≤
∫
f dµ, ∀f ∈ Cc(X).

For, if this is true, the reverse inequality follows from replacing f by −f in this
inequality. Let f(X) ∈ [a, b]. For ε > 0, pick

y0 < a < y1 < · · · < yn = b,

so that yj − yj−1 < ε. Let Ej = f−1 ((yj−1, yj]) ∩ K, K ≡ sptf . Then {Ej}
are measurable, mutually disjoint and K =

⋃n
j=1Ej. As µ(K) < ∞ by Step 3,

µ(Ej) <∞, ∀j. We can find an open set Gj containing Ej such that

µ(Ej) +
ε

n
≥ µ(Gj).

We could further require Gj to satisfy

yj−1 − ε < f(x) < yj + ε, ∀x ∈ Gj.

As K ⊂
⋃n

j=1Gj, we fix a partition of unity {φj} on K subordinate to {Gj}.
Then f =

∑
j fφj in X and

Λf =
∑

Λ(fφj)

≤
∑

(yj + ε)Λφj =
∑

(|a|+ yj + ε)Λφj − |a|
∑

Λφj

≤
∑

(|a|+ yj + ε)µ(Gj)− |a|
∑

Λφj

(|a|+ yj + ε ≥ 0)

≤
∑

(yj−1 + |a|+ 2ε)
(
µ(Ej) +

ε

n

)
− |a|

∑
Λφj

=
ε

n

∑
(yj−1 + |a|+ 2ε) +

∑
yj−1µ(Ej) +

∑
(|a|+ 2ε)µ(Ej)

− |a|
∑

Λφj

≤ ε(|a|+ b+ 2ε) +
∑

yj−1µ(Ej)

+ 2εµ(K) + |a|
(∑

µ(Ej)−
∑

Λφj

)
≤ ε(|a|+ b+ 2ε) +

∑
yj−1µ(Ej) + 2εµ(K)

+ |a|
(
µ(K)− Λ

(∑
φj

))
≤ ε(|a|+ b+ 2ε) +

∑
yj−1µ(Ej) + 2εµ(K),
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where µ(K)− Λ
(∑

φj

)
≤ 0 has been used in the last step. On the other hand,∫

f dµ =
∑
j

∫
Ej

f dµ ≥
∑
j

yj−1µ(Ej).

Hence

Λf ≤ ε(|a|+ b+ 2ε) +

∫
f dµ+ 2εµ(K),

and the desired result follows after letting ε→ 0.

The measure µ may be written as µΛ to emphasize its dependence on Λ. We
may call it the “Riesz measure” associated to Λ.

The Riesz measure has further regularity properties. Here regularity means
how close we can approximate a set by open sets from outside or by compact sets
from inside. To state them we need to introduce some terminologies.

Let X be a topological space and µ a Borel measure on it. A set E ⊂ X is
called outer regular (w.r.t. µ) if

µ(E) = inf{µ(G) : G is open and E ⊂ G} .

It is inner regular (w.r.t. µ) if

µ(E) = sup{µ(K) : K is compact and K ⊂ E} .

A Borel measure is called regular if every measurable set is outer and inner
regular.

Proposition 2.9. Let µΛ be the Riesz measure of Λ. Under the setting of Theo-
rem 2.7,

(a) Every set is outer regular w.r.t. µΛ.

(b) Every open set is inner regular w.r.t. µΛ.

(c) Every measurable set with finite measure is inner regular w.r.t. µΛ.

Proof. (a) It follows immediately from the definition of the Riesz measure.
(b) We have

µ(G) = sup {Λf : f < G}

= sup

{∫
f dµ : f < G

}
(Theorem 2.7)

≤ sup {µ(K) : K ⊂ G is compact }
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since ∫
f dµ ≤ µ(K) where K ≡ sptf ⊂ G.

(c) Let A be measurable, µ(A) <∞. Given ε > 0, we find an open G ⊃ A such
that µ(G) ≤ µ(A) + ε. By countable additivity, µ(G \ A) < ε. Using (a), there
is some open G1 contained in G such that G \ A ⊂ G1 with µ(G1) < 2ε. Then
G\G1 ⊂ A. Noting A ⊂ G\G1∪(A∩G1), we have µ(A) ≤ µ(G\G1)+µ(A∩G1) ≤
µ(G\G1)+2ε, so µ(G\G1)+2ε ≥ µ(A). As G is open, by (b) there exists compact
K ⊂ G such that µ(G\K) < ε. Then K1 ≡ K \G1 is compact, K1 ⊂ G\G1 ⊂ A.
Writing G \G1 = K1 ∪ (G \K) \G1, we have

µ(K1) + 3ε ≥ µ(A).

Examples (see Exercise) show that some measurable sets of infinite measure
are not inner regular. To remedy this undesirable situation we need to put extra
assumption on the space or the measure. Recall that a measure on a topological
space X is σ-finite if there exist measurable {Xj} such that X =

⋃
j Xj. Without

loss of generality one may assume that Xj’s are mutually disjoint. The following
proposition shows that every σ-finite Riesz measure is regular.

Proposition 2.10. Let µ be a Riesz measure on a locally compact Hausdorff
space X which is σ-finite with respect to µ. Then

(a) For every measurable set E and given ε > 0, there exist an open set G and a
closed F such that F ⊂ E ⊂ G and µ(G \ F ) < ε.

(b) For each measurable E, there exist a Gδ set A and an Fσ set B such that
A ⊂ E ⊂ B and µ(B \ A) = 0. Consequently, MC is the completion of B.

(c) Every measurable set is inner regular.

Proof. (a) Let E be measurable and Ej = E ∩Xj where X =
⋃

j Xj in a σ-finite
decomposition of X. By outer regularity of the Riesz measure, for each ε > 0,
there exists an open set Gj containing Ej such that µ(Gj \Ej) = µ(Gj)−µ(Ej) ≤
ε/2j for all j ≥ 1. It follows that µ(G\E) ≤

∑
j µ(Gj \Ej) ≤ ε where G =

⋃
j Gj

is open after using G \ E = (
⋃

j Gj) \ (
⋃

k Ek) =
⋃

j(Gj \
⋃

k Ek) ⊂
⋃

j(Gj \ Ej).
Next, we apply this result to the complement of E, E ′, to get an open G1 such
that E ′ ⊂ G1 and µ(G1 \ E ′) < ε. Then the closed set F = G′ is contained in E
and satisfies µ(E \ F ) = µ(G1 \ E ′) < ε.

(b) For each j, there exists an open Gj containing E such that µ(Gj \E) < 1/j.
Letting A =

⋂
j Gj, A is aGδ set containing E and satisfies µ(A\E) ≤ µ(Gj\E) <

1/j for all j. Letting j → ∞, we conclude that µ(A\E) = 0. Applying this result
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to E ′ instead of E, we obtain a Gδ set A1 containing E ′ with µ(A1 \ E ′) = 0.
Therefore, the Fσ-set B = A′

1 is contained in E and µ(E \ B) = µ(A1 \ E ′) = 0
holds.

(c) In view of Proposition 2.9(c), it suffices to show that

sup
{
µ(K) : K ⊂ E is compact

}
= ∞

when E is a measurable set with infinite measure. Assuming Xj’s are mutually
disjoint in a σ-finite decomposition of X and Ej = E ∩ Xj as above, we have
∞ = µ(E) =

∑
j µ(Ej) and therefore for each M > 0, we can find some J such

that
∑J

j=1 µ(Ej) ≥ M + 1. For each j, let Kj be a compact set in Ej such that

µ(Kj) ≥ µ(Ej)− 1/2j. Then the compact set K = ∪J
j=1Kj is contained in E and

µ(K) =
∑J

j=1 µ(Kj) ≥M , and the desired result holds.

If one prefers to impose assumptions on the space itself rather than the mea-
sure, one may use the notion of σ-compactness. Indeed, a topological space is
σ-compact if it can be written as a countable union of compact subsets. The
Euclidean space is an example of a σ-compact space. Apparently, every Riesz
measure on such a space is σ-finite.

Finally, we have the following rather simple characterization of Riesz measures
in Rn.

Proposition 2.11. Let λ be a Borel measure on Rn which is finite on compact
sets. There exists a Riesz measure µ such that λ and µ coincide on B.

I leave the proof as an exercise.

2.5 Lusin’s Theorem

Here we study how to approximate measurable functions by continuous functions.
This is possible only if the measure has some regularity properties. The following
Lusin’s theorem is a typical example. You may consult [EG] or google for more.

Theorem 2.12. Let µ be a Riesz measure on a locally compact Hausdorff space X
and let f be a real-valued measurable function vanishing outside some measurable
set A, µ(A) <∞. For every ε > 0, there exists some g ∈ Cc(X), such that

µ
({
x : f(x) ̸= g(x)

})
< ε.

Moreover, when f is bounded, g can be chosen to satisfy

sup
x∈X

|g(x)| ≤ sup
x∈X

|f(x)|.
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Proof. (Following [R]) By writing f = f+−f− we may assume f is non-negative.
We further assume that f is bounded. By dividing it by a large number we may
assume 0 ≤ f < 1. We also assume A is compact. Recalling in the proof of
Theorem 1.6, there is a sequence of simple functions {sj} converging to f in a
monotone way. Letting tj = sj − sj−1 and t1 = s1, we can write

f(x) =
∞∑
j=1

tj(x), ∀x ∈ X.

Using f < 1, one can verify that 2jtj is the characteristic function of some Tj in
A. Let G be an open set with compact closure containing A. By the regularity
properties of the Riesz measure, we can fix compact sets Kj and open sets Gj

satisfying Kj ⊂ Tj ⊂ Gj ⊂ G and µ(Gj \Kj) ≤ ε/2j. By Urysohn’s lemma, we
can find some hj such that Kj < hj < Gj. We define

g(x) =
∞∑
j=1

hj(x)

2j
.

By Weierstrass M-test, the series defining g is uniformly convergent, hence g
is continuous. The support of g is contained in the compact set G and hence
compact. If f(x) ̸= g(x) at some x, there must be some j1 such that hj1(x) ̸=
tj1(x). As hj is equal to tj in Kj for all j, the set {x : f(x) ̸= g(x)} is contained
in
⋃

j Gj \Aj. Therefore, the total measure of {x : f(x) ̸= g(x)} is controlled by∑
j

µ(Gj \Kj) <
∑
j

ε

2j
≤ ε.

By an approximation argument, one can remove the compactness of A and
the boundedness of f as long as it is finite a.e..

Finally, when f is bounded, we set φ(z) to be z for z ∈ [−M,M ] where
M = supX |f |,M and −M respectively for z > M and z < M . Then the
composite function g1(x) = φ(g(x)) meets our additional requirement.

Corollary 2.13. Setting as above, let f be a measurable function satisfying |f | ≤
1. Then there exists a sequence of functions {gj} in Cc(X), |gj| ≤ 1, such that
limj→∞ gj(x) = f(x) a.e..

Proof. Applying Lusin’s theorem to get gj ∈ Cc(X) which is equal to f except in
a measurable set Ej with µ(Ej) ≤ 2−j. Then

∑
j µ(Ej) ≤ 1. By Borel-Cantelli

lemma, the set E consisting of points which belong to infinitely many Ej’s is a
null set. For each x not in this set, it could only belong to finitely many Ej’s.
Letting the largest j be j0, gj(x) = f(x) for all j > j0.
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2.6 Semicontinuous and Borel Functions

Let X be a topological space and x0 ∈ X. The function f : X → (−∞,∞] is
lower semicontinuous at x0 if for every ε > 0, there is a neighborhood N of x0
such that

f(x) > f(x0)− ε, ∀x ∈ N.

When f(x0) = ∞, the definition should be modified to: For every M > 0, there
exists a neighborhood N of x0 such that

f(x) > M, ∀x ∈ N.

We define upper semicontinuity at x0 for f : X → [−∞,∞) as requiring −f to
be lower semicontinuous at x0. A function is lower semicontinuous on a set E,
E ⊂ X, if it is so at every point of E.

Proposition 2.14. A function f : X → (−∞,∞] is lower semicontinuous ev-
erywhere if and only if {x ∈ X : f(x) > a} is open for every a ∈ R.

Proof. ⇒) Let x0 ∈ {x ∈ X : f(x) > a}. Then f(x0) > a. For ε = (f(x0)− a)/2,
there exists a neighborhood N of x0 such that

f(x) ≥ f(x0)−
1

2
(f(x0)− a)

=
1

2
f(x0) +

a

2
> a, ∀x ∈ N,

hence N ⊂ {x ∈ X : f(x) > a} and {x ∈ X : f(x) > a} is an open set.
⇐) Taking a = f(x0)−ε, then {x : f(x) > f(x0)− ε} is an open set and contains
x0.

Note the following elementary facts:

� If f is lower semicontinuous at x0, then

lim
x→x0

f(x) ≥ f(x0).

If f is upper semicontinuous at x0, then

lim
x→x0

f(x) ≤ f(x0).

� Every continuous function is lower and upper semicontinuous.

� The characteristic function χG is lower semicontinuous when G is open and
χF is upper semicontinuous when F is closed.
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� The supremum f = supα fα where fα’s are lower semicontinuous is lower
semicontinuous. The infimum f = infα fα where fα’s are upper semicontin-
uous is upper semicontinuous.

See Exercise 5 for more.
One can use lower and upper semicontinuous functions to approximate mea-

surable functions. The following Vitali-Carathéodory theorem is a sample.

Theorem 2.15. Let µ be a Borel outer measure in which all measurable sets
with finite measure are regular. For each integrable function f and ε > 0, there
exist an upper continuous u which is bounded above and a lower semicontinuous
v which is bounded from below such that u ≤ f ≤ v and∫ (

v − u
)
dµ < ε.

See [R] for a proof.
An extended real-valued function f is a Borel function if f−1(G) is a Borel set

for every open set G in R. Lower and upper semicontinuous functions constitute
a special class of Borel measurable functions. For a Borel measure, we have the
following inclusion relations

{continuous functions} ⊂ {lower/upper semicontinuous functions}

⊂ {Borel functions} ⊂ {measurable functions} .

We now study how to approximate a measurable function by Borel functions.
When the measure is a Riesz measure, a measurable function is in fact equal to a
Borel function modulo a null set. To see this, we start with a general observation.

Lemma 2.16. Let (X,M, µ) and (X,M1, µ1) be two measure spaces where M1 ⊂
M and µ coincides with µ1 on M1. Suppose that for each A ∈ M, there exists
some A1 ∈ M1 such that A ⊂ A1 and µ(A1 \ A) = 0. Given any extended real-
valued, M-measurable function f from X to R, there exists an M1-measurable g
such that g = f µ-a.e.

Proof. By Theorem 1.6 we can find an increasing sequence of simple functions
{sk} satisfying limk→∞ sk(x) = f(x) for every x ∈ X. Each sk is of the form∑

j α
k
jχEk

j
where Ek

j ∈ M are mutually disjoint for each fixed k. By assump-

tion, we can find F k
j ∈ M1 such that Ek

j ⊂ F k
j and µ(F k

j \ Ek
j ) = 0. We set

tk =
∑

j α
k
jχFk

j
and g(x) = limk→∞ tk(x). As each tk is M1-measurable, so is g.

Furthermore, each tk is equal to sk µ-a.e.. It follows that g is equal to f µ-a.e..

Proposition 2.17. Let µ be a Borel measure on a topological space X in which
every measurable set is outer regular. Suppose that µ is σ-finite. Then for every
measurable function from X to R, there exists a Borel function g which coincides
with f µ-a.e..
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Proof. It suffices to prove the proposition assuming that µ(X) < ∞. By outer
regularity, for each measurable set E and n, there exists a Borel set Bn satisfying
E ⊂ Bn and µ(Bn \ E) = µ(Bn) − µ(E) < 1/n. It follows that the Borel set
B =

⋂
nBn contains E and µ(B) = µ(E). Now we can apply the lemma above

to draw the desired conclusion.

Comments on Chapter 2. In this chapter we discuss outer measures fol-
lowing [EG] and use it to prove the Riesz representation theorem despite many
details are from [R]. A full version of Riesz representation theorem which associ-
ated a bounded linear functional on Cc(X) to a signed measure will be discussed
in Chapter 5.

The modern theory of integration was due to Lebesgue (1902) who defined the
Lebesgue integration on the Euclidean space using basically the outer measure ap-
proach. Instead of using closed rectangles to cover a set, he used open rectangles,
but this is not essential. On the other hand, Riesz (1909) established the unex-
pected result that every positive linear functional on [0, 1] is a Riemann-Stieltjes
integral. Nowadays it is known that each Riemann-Stieltjes integral corresponds
to the integral with respect to some Borel measure. Lebesgue’s approach was
generalized by Caratheodory (1918) in his construction of outer measures. Since
then these have been the two main ways to construct measure spaces. In [R]
the approach by Riesz representation theorem is preferred and outer measures
are not mentioned at all. However, in the past several decades, the advances in
analysis (PDE’s and dynamical systems) and geometry (fractals and geometric
measure theory) have shown the importance of Caratheodory’s approach over
the approach by the representation theorem. One reason is the restriction of
the latter: First of all, one must work on a topological space. Furthermore, the
measures obtained by the representation are finite on compact sets. However,
there are many interesting measures, for instance, the fractional Hausdorff mea-
sures, are not finite on compact sets and consequently cannot be associated to
any positive linear functionals. To make our discussion updated and balanced, in
this chapter we discuss outer measures first and use it to prove Riesz represen-
tation theorem. Nevertheless, you should not be left with the impression that I
am downplaying the role of Riesz representation theorem in real analysis. Both
Caratheodory’s construction and Riesz representation theorem will be used in
our subsequent development.
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