## Solution to MATH5011 homework 9

(1) Consider $L^{p}\left(\mathbb{R}^{n}\right)$ with the Lebesgue measure, $0<p<\infty$. Show that $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$ holds $\forall f, g$ implies that $p \geq 1$. Hint: For $0<p<1, x^{p}+y^{p} \geq(x+y)^{p}$.

Solution. Recall that in fact we have, for $x, y \geq 0$,

$$
\left\{\begin{array}{l}
x^{p}+y^{p} \geq(x+y)^{p}, \quad 0<p<1 \\
x^{p}+y^{p}=(x+y)^{p}, \quad p=1 \\
x^{p}+y^{p} \leq(x+y)^{p}, \quad 1<p<\infty
\end{array}\right.
$$

Pick any $a, b \geq 0$ and define $f, g \in L^{p}\left(\mathbb{R}^{n}\right)$ by

$$
f(x)= \begin{cases}a, & x \in[0,1]^{n} \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
g(x)= \begin{cases}b, & x \in[2,3]^{n} \\ 0, & \text { otherwise }\end{cases}
$$

Simple calculations show that $\|f\|_{p}=a,\|g\|_{p}=b$ and $\|f+g\|_{p}=\left(a^{p}+b^{p}\right)^{1 / p}$. Now the hypothesis implies $a^{p}+b^{p} \geq(a+b)^{p}$. Hence, $p \geq 1$.
(2) Consider $L^{p}(\mu), 0<p<1$. Then $\frac{1}{q}+\frac{1}{p}=1, q<0$.
(a) Prove that $\|f g\|_{1} \geq\|f\|_{p}\|g\|_{q}$.
(b) $f_{1}, f_{2} \geq 0 .\|f+g\|_{p} \geq\|f\|_{p}+\|g\|_{p}$.
(c) $d(f, g) \stackrel{\text { def }}{=}\|f-g\|_{p}^{p}$ defines a metric on $L^{p}(\mu)$.

## Solution.

(a) Assume that $g>0$ everywhere first. Applying Hölder's inequality with conjugate
exponents $\widetilde{p}=\frac{1}{p}$ and $\widetilde{q}=\frac{1}{1-p}=\frac{\widetilde{p}}{\widetilde{p}-1}$, we have

$$
\begin{aligned}
\left\||f|^{p}\right\|_{1} & =\left\||f g|^{1 / \widetilde{p}}|g|^{-1 / \widetilde{p}}\right\|_{1} \\
& \leq\left\||f g|^{1 / p}\right\|_{\widetilde{p}}\left\||g|^{-1 / p}\right\|_{\widetilde{q}} \\
& =\|f g\|_{1}^{1 / \widetilde{p}}\left\||g|^{-1 /(\widetilde{p}-1)}\right\|_{1}^{(\widetilde{p}-1) / \widetilde{p}} \\
& =\|f g\|_{1}^{p}\left\||g|^{-p /(1-p)}\right\|_{1}^{1-p}, \text { so } \\
\left\||f|^{p}\right\|_{1}^{1 / p} & \leq\|f g\|_{1}\left\||g|^{-p /(1-p)}\right\|_{1}^{1 / p-1} \\
& =\|f g\|_{1}\left\||g|^{q}\right\|_{1}^{-1 / q}, \text { or } \\
\|f\|_{p} & \leq\|f g\|_{1}\|g\|_{q}^{-1}, \text { that is } \\
\|f g\|_{1} & \geq\|f\|_{p}\|g\|_{q} .
\end{aligned}
$$

For a general $g \geq 0$, apply the result to $g_{\varepsilon}=g+\varepsilon$ first and then let $g_{\varepsilon}$ tend to $g$.
(b) Without loss of generality, we can assume $\|f+g\|_{p} \neq 0$. Using part (a), we have

$$
\begin{aligned}
\|f+g\|_{p}^{p} & =\int(f+g)^{p} d \mu \\
& =\int f(f+g)^{p-1} d \mu+\int g(f+g)^{p-1} d \mu \\
& \geq\left(\|f\|_{p}+\|g\|_{p}\right)\left(\int(f+g)^{(p-1)\left(\frac{p}{p-1}\right)} d \mu\right)^{1-\frac{1}{p}} \\
& =\left(\|f\|_{p}+\|g\|_{p}\right)\|f+g\|_{p}^{p-1}, \text { so } \\
\|f+g\|_{p} & \geq\|f\|_{p}+\|g\|_{p} .
\end{aligned}
$$

(c) The fact that for $x, y \geq 0$ and $0<p<1$,

$$
(x+y)^{p} \leq x^{p}+y^{p}
$$

implies

$$
\int|f+g|^{p} d \mu \leq \int|f|^{p} d \mu+\int|g|^{p} d \mu
$$

Hence, $d(f, g) \xlongequal{\text { def }}\|f-g\|_{p}^{p}$ defines a metric on $L^{p}(\mu)$.
(3) Let $X$ be a metric space consisting of infinitely many elements and $\mu$ a Borel measure on $X$ such that $\mu(B)>0$ on any metric ball (i.e. $B=\left\{x: d\left(x, x_{0}\right)<\rho\right\}$ for some $x_{0} \in X$ and $\rho>0$. Show that $L^{\infty}(\mu)$ is non-separable.

Suggestion: Find disjoint balls $B_{r_{j}}\left(x_{j}\right)$ and consider $\chi_{B_{r_{j}}\left(x_{j}\right)}$.
Solution. Standard argument.
(4) Show that $L^{1}(\mu)^{\prime}=L^{\infty}(\mu)$ provided $(X, \mathfrak{M}, \mu)$ is $\sigma$-finite, i.e., $\exists X_{j}, \mu\left(X_{j}\right)<\infty$, such that $X=\bigcup X_{j}$.
Hint: First assume $\mu(X)<\infty$. Show that $\exists g \in L^{q}(\mu), \forall q>1$, such that

$$
\Lambda f=\int f g d \mu, \quad \forall f \in L^{p}, p>1
$$

Next show that $g \in L^{\infty}(\mu)$ by proving the set $\{x:|g(x)| \geq M+\varepsilon\}$ has measure zero $\forall \varepsilon>0$. Here $M=\|\Lambda\|$.

## Solution.

Step 1. $\mu(X)<\infty$.
In this case, Hölder's inequality implies that a continuous linear functional $\Lambda$ on $L^{1}(X)$ has a restriction to $L^{p}(X)$ which is again continuous since

$$
\begin{equation*}
|\Lambda f| \leq\|\Lambda\|\|f\|_{1} \leq\|\Lambda\| \mu(X)^{1 / q}\|f\|_{p} \tag{1}
\end{equation*}
$$

for all $p \geq 1$. By the proof for $p>1$ in the lecture notes, we have the existence of a unique $v_{p} \in L^{q}(X)$ such that $\Lambda f=\int v_{p} f d \mu$ for all $f \in L^{p}(X)$. Moreover, since $L^{r}(X) \subset L^{p}(X)$ for $r \geq p$ (by Hölder's inequality) the uniqueness of $v_{p}$ implies that $v_{p}$ is, in fact, independent of $p$, i.e. this function (which we now call $v$ ) is in every $L^{r}(X)$-space for $1<r<\infty$.
If we now pick some conjugate exponents $q$ and $p$ with $p>1$ and choose $f=|v|^{q-2} \bar{v}$ in (1), we obtain

$$
\begin{aligned}
\int|v|^{q} d \mu & =\Lambda f \\
& \leq\|\Lambda\| \mu(X)^{1 / q}\left(\int|v|^{(q-1) p} d \mu\right)^{1 / p} \\
& =\|\Lambda\| \mu(X)^{1 / q}\|v\|_{q}^{q-1}
\end{aligned}
$$

and hence $\|v\|_{q} \leq\|\Lambda\| \mu(X)^{1 / q}$ for all $q<\infty$. We claim that $v \in L^{\infty}(X)$; in fact $\|v\|_{\infty} \leq\|\Lambda\|$. Suppose that $\mu(\{x \in X:|v(x)|>\|\Lambda\|+\varepsilon\})=M>0$. Then $\|v\|_{q} \geq(\|\Lambda\|+\varepsilon) M^{1 / q}$, which exceeds $\|\Lambda\| \mu(X)^{1 / q}$ if $q$ is big enough. Thus
$v \in L^{\infty}(X)$ and $\Lambda f=\int v f d \mu$ for all $f \in L^{p}(X)$ for any $p>1$. If $f \in L^{1}(X)$ is given, then $\int|v||f| d \mu<\infty$. Replacing $f$ by $f^{k}=f \chi_{\{x:|f(x)| \leq k\}}$, we note that $\left|f^{k}\right| \leq|f|$ and $f^{k}(x) \rightarrow f(x)$ pointwise as $k \rightarrow \infty$; hence, by dominated convergence, $f^{k} \rightarrow f$ in $L^{1}(X)$ and $v f^{k} \rightarrow v f$ in $L^{1}(X)$. Thus

$$
\Lambda f=\lim _{k \rightarrow \infty} \Lambda f^{k}=\lim _{k \rightarrow \infty} \int v f^{k} d \mu=\int v f d \mu
$$

Step 2. $\mu(X)=\infty$.
The previous conclusion can be extended to the case that $\mu(X)=\infty$ but $X$ is $\sigma$-finite. Then

$$
X=\bigcup_{j=1}^{\infty} X_{j}
$$

with $\mu\left(X_{j}\right)$ finite and with $X_{j} \cap X_{k}$ empty whenever $j \neq k$. Any $L^{1}(X)$ function $f$ can be written as

$$
f(x)=\sum_{j=1}^{\infty} f_{j}(x)
$$

where $f_{j}=\chi_{j} f$ and $\chi_{j}$ is the characteristic function of $X_{j} . f_{j} \mapsto \Lambda f_{j}$ is then an element of $L^{1}\left(X_{j}\right)^{\prime}$, and hence there is a function $v_{j} \in L^{\infty}\left(X_{j}\right)$ such that $\Lambda f_{j}=$ $\int_{X_{j}} v_{j} f_{j} d \mu=\int_{X_{j}} v_{j} f d \mu$. The important point is that each $v_{j}$ is bounded in $L^{\infty}\left(X_{j}\right)$ by the same $\|\Lambda\|$. Moreover, the function $v$, defined on all of $X$ by $v(x)=v_{j}(x)$ for $x \in X_{j}$, is clearly measurable and bounded by $\|\Lambda\|$. Thus, we have $\Lambda f=\int_{X} v f d \mu$ by the countable additivity of the measure $\mu$.
If there exist $v, w \in L^{\infty}(X)$ such that

$$
\Lambda f=\int_{X} v f d \mu=\int_{X} w f d \mu, \quad \forall f \in L^{1}(X)
$$

then

$$
\int_{X}(v-w) f d \mu=0, \quad \forall f \in L^{1}(X)
$$

Suppose, on the contrary, that $(v-w)>0$ on some $A \subset \mathfrak{M}$ with $0<\mu(A)<\infty$. By taking $f=\chi_{A}$ one arrives at a contradiction. Thus, given $\Lambda \in L^{1}(X)$ there corresponds a unique $v \in L^{\infty}(X)$.
(5) (a) For $1 \leq p<\infty,\|f\|_{p},\|g\|_{p} \leq R$, prove that

$$
\int\left||f|^{p}-|g|^{p}\right| d \mu \leq 2 p R^{p-1}\|f-g\|_{p}
$$

(b) Deduce that the map $f \mapsto|f|^{p}$ from $L^{p}(\mu)$ to $L^{1}(\mu)$ is continuous.

Hint: $\operatorname{Try}\left|x^{p}-y^{p}\right| \leq p|x-y|\left(x^{p-1}+y^{p-1}\right)$.

## Solution.

(a) Notice that $\left|x^{p}-y^{p}\right| \leq p|x-y|\left(x^{p-1}+y^{p-1}\right)$, which follows form the mean value theorem applying to $h(x)=x^{p}$. Then it follows easily from Hölder's inequality that

$$
\int\left||f|^{p}-|g|^{p}\right| d \mu \leq 2 p R^{p-1}\|f-g\|_{p}
$$

(b) This is a direct consequence of (a).
(6) Optional. Let $\mathfrak{M}$ be the collection of all sets $E$ in the unit interval $[0,1]$ such that either $E$ or its complement is at most countable. Let $\mu$ be the counting measure on this $\sigma$-algebra $\mathfrak{M}$. If $g(x)=x$ for $0 \leq x \leq 1$, show that $g$ is not $\mathfrak{M}$-measurable, although the mapping

$$
f \mapsto \sum x f(x)=\int f g d \mu
$$

makes sense for every $f \in L^{1}(\mu)$ and defines a bounded linear functional on $L^{1}(\mu)$. Thus $\left(L^{1}\right)^{*} \neq L^{\infty}$ in this situation.
Solution. $g$ is not $\mathfrak{M}$-measurable because $g^{-1}\left(\frac{1}{4}, \frac{3}{4}\right)=\left(\frac{1}{4}, \frac{3}{4}\right) \notin \mathfrak{M}$. The functional $\Lambda f=\sum x f(x)$ is clearly linear. To see that it is bounded, if $f \in L^{1}(\mu)$, then $f$ is non-zero on an at most countable set $\left\{x_{i}\right\}$ and by integrability,

$$
\sum_{i=1}\left|f\left(x_{i}\right)\right|<\infty .
$$

Thus $\Lambda f$ is well defined as $g$ is a bounded function. Hence the operator is bounded.
(7) Optional. Let $L^{\infty}=L^{\infty}(m)$, where $m$ is Lebesgue measure on $I=[0,1]$. Show that there is a bounded linear functional $\Lambda \neq 0$ on $L^{\infty}$ that is 0 on $C(I)$, and therefore there is no $g \in L^{1}(m)$ that satisfies $\Lambda f=\int_{I} f g d m$ for every $f \in L^{\infty}$. Thus $\left(L^{\infty}\right)^{*} \neq L^{1}$.
Solution. Method 1. For any $x \in I$ take $\Lambda_{x} f=g\left(x_{+}\right)-g\left(x_{-}\right)$for all $f$ such that $f=g$ a.e. for some function $g$ such that the two one-sided limits $g\left(x_{+}\right)$and $g\left(x_{-}\right)$both exist. Then
$\left\|\Lambda_{x}-\Lambda_{y}\right\| \geq 1$ for $x \neq y$. With reference to the question, we can just take $x=1 / 2$.
Method 2. Consider $\chi_{\left[0, \frac{1}{2}\right]} \in L^{\infty} \backslash C(I)$, as $C(I)$ is closed subspace in $L^{\infty}$, by consequence of Hahn-Banach Theorem (thm 3.11 in p. 38 of lecture notes on functional analysis.), there is non-zero bounded linear functional $\Lambda$ on $L^{\infty}$ which is zero on $C(I)$.
If there is $g \in L^{1}(m)$ that satisfies $\Lambda f=\int_{I} f g d m$ for every $f \in L^{\infty}$,

$$
\Lambda f=\int_{I} f g d m=0, \forall f \in C(I) \Rightarrow g=0 .
$$

we have $\Lambda=0$ which is impossible.
(8) Prove Brezis-Lieb lemma for $0<p \leq 1$.

Hint: Use $|a+b|^{p} \leq|a|^{p}+|b|^{p}$ in this range.
Solution. Taking $g_{n}=f_{n}-f$ as $a$ and $f$ as $b$,

$$
\left|\left|f+g_{n}\right|^{p}-\left|g_{n}\right|^{p}\right| \leq|f|^{p},
$$

or,

$$
-|f|^{p} \leq\left|f+g_{n}\right|^{p}-\left|g_{n}^{p} \leq|f|^{p} .\right.
$$

we have

$$
-2|f|^{p} \leq\left|f+g_{n}\right|^{p}-\left|g_{n}\right|^{p}-|f|^{p} \leq 0
$$

which implies

$$
\left|\left|f+g_{n}\right|^{p}-\left|g_{n}\right|^{p}-|f|^{p}\right| \leq 2|f|^{p},
$$

and result follows from Lebesgue dominated convergence theorem.
(9) Let $f_{n}, f \in L^{p}(\mu), 0<p<\infty, f_{n} \rightarrow f$ a.e., $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$. Show that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$.

Solution. Using the Brezis-Lieb lemma for $0<p<\infty$, we have

$$
\begin{aligned}
\left\|f_{n}-f\right\|_{p}^{p} & =\int_{X}\left|f_{n}-f\right|^{p} d \mu \\
& \leq \int_{X}\left(\left|f_{n}-f\right|^{p}-\left(\left|f_{n}\right|^{p}-|f|^{p}\right)\right) d \mu+\int_{X}\left(\left|f_{n}\right|^{p}-|f|^{p}\right) d \mu \\
& \leq \int_{X}| | f_{n}-\left.f\right|^{p}-\left(\left|f_{n}\right|^{p}-|f|^{p}\right) \mid d \mu+\left(\left\|f_{n}\right\|_{p}^{p}-\|f\|_{p}^{p}\right) \\
& \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.
(10) Suppose $\mu$ is a positive measure on $X, \mu(X)<\infty, f_{n} \in L^{1}(\mu)$ for $n=1,2,3, \ldots, f_{n}(x) \rightarrow$ $f(x)$ a.e., and there exists $p>1$ and $C<\infty$ such that $\int_{X}\left|f_{n}\right|^{p} d \mu<C$ for all $n$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f-f_{n}\right| d \mu=0
$$

Hint: $\left\{f_{n}\right\}$ is uniformly integrable.
Solution. By Vitali's convergence Theorem, it suffices to prove that $\left\{f_{n}\right\}$ is uniformly integrable. Let q be conjugate to p. By Hölder inequality,

$$
\begin{aligned}
\int_{E}\left|f_{n}\right| d \mu & \leq\left\|f_{n}\right\|_{p}\{\mu(E)\}^{\frac{1}{q}} \\
& \leq C^{\frac{1}{p}}\{\mu(E)\}^{\frac{1}{q}}
\end{aligned}
$$

for any measurable $E$. Now the result follows easily.
(11) We have the following version of Vitali's convergence theorem. Let $\left\{f_{n}\right\} \subset L^{p}(\mu), 1 \leq p<$ $\infty$. Then $f_{n} \rightarrow f$ in $L^{p}$-norm if and only if
(i) $\left\{f_{n}\right\}$ converges to $f$ in measure,
(ii) $\left\{\left|f_{n}\right|^{p}\right\}$ is uniformly integrable, and
(iii) $\forall \varepsilon>0$, there exists a measurable $E, \mu(E)<\infty$, such that $\int_{X \backslash E}\left|f_{n}\right|^{p} d \mu<\varepsilon, \forall n$.

I found this statement from PlanetMath. Prove or disprove it.
Solution. Let $\varepsilon>0$. By (iii), there exists a set $E$ of finite measure (WLOG assume positive measure) such that

$$
\int_{\widetilde{E}}\left|f_{n}\right|^{p}<\varepsilon
$$

Since $\left\{f_{n}\right\}$ converges to $f$ in measure, there is a subsequence $\left\{f_{n_{k}}\right\}$ which converges to $f$ pointwisely a.e.. By Fatou's Lemma,

$$
\int_{\widetilde{E}}|f|^{p}<\varepsilon .
$$

By (ii), there exists $\delta>0$ such that whenever $\mu(A)<\delta$,

$$
\int_{A}\left|f_{n}\right|^{p}<\varepsilon^{\frac{1}{p}} ;
$$

WLOG, by choosing a smaller $\delta$, we may assume further whenever $\mu(A)<\delta$

$$
\int_{A}|f|^{p}<\varepsilon^{\frac{1}{p}}
$$

because there is a subsequence $\left\{f_{n_{k}}\right\}$ which converges to $f$ pointwisely a.e. and we can apply Fatou's Lemma, By (i), there exists $N \in \mathbb{N}$ such that for all $n \geq N$

$$
\mu\left\{x \in E: \left.\left|\left(f_{n}-f\right)(x)\right|^{p} \geq \frac{\varepsilon}{\mu(E)} \right\rvert\,\right\}<\delta .
$$

Now, for $n \geq \mathbb{N}$, define $A_{n}=\left\{x \in E:\left|\left(f_{n}-f\right)(x)\right|^{p} \geq \frac{\varepsilon}{\mu(E)}\right\}$ and $B_{n}=E \backslash A_{n}$, and we have

$$
\begin{aligned}
\int\left|f_{n}-f\right|^{p} & =\int_{\widetilde{E}}\left|f_{n}-f\right|^{p}+\int_{E}\left|f_{n}-f\right|^{p} \\
& <2^{p} \varepsilon+\int_{A_{n}}\left|f_{n}-f\right|^{p}+\int_{B_{n}}\left|f_{n}-f\right|^{p} \\
& <2^{p} \varepsilon+\left(\int_{A_{n}}\left|f_{n}\right|^{p}+\int_{A_{n}}|f|^{p}\right)^{p}+\varepsilon \\
& <2^{p} \varepsilon+2^{p} \varepsilon+\varepsilon=\left(2^{p+1}+1\right) \varepsilon .
\end{aligned}
$$

This completes the proof.
(12) Let $\left\{x_{n}\right\}$ be bounded in some normed space $X$. Suppose for $Y$ dense in $X^{\prime}, \Lambda x_{n} \rightarrow \Lambda x$, $\forall \Lambda \in Y$ for some $x$. Deduce that $x_{n} \rightharpoonup x$.

Solution. Since $\left\{x_{n}\right\}$ is bounded, there exists $M>0$ such that $\left\|x_{n}\right\| \leq M$. Write $M_{1}=$ $\max \{M,\|x\|\}$.

Given $\varepsilon>0$ and $\Lambda \in X^{\prime}$, choose $\Lambda_{1} \in Y$ such that $\left\|\Lambda-\Lambda_{1}\right\|<\frac{\varepsilon}{3 M_{1}}$ and choose $N$ large such that $\left|\Lambda x_{n}-\Lambda x\right|<\frac{\varepsilon}{3}$. Then

$$
\begin{aligned}
\left|\Lambda x_{n}-\Lambda x\right| & =\left|\Lambda x_{n}-\Lambda_{1} x_{n}\right|+\left|\Lambda_{1} x_{n}-\Lambda_{1} x\right|+\left|\Lambda_{1} x-\Lambda x\right| \\
& \leq \frac{\varepsilon}{3 M_{1}} M+\frac{\varepsilon}{3}+\frac{\varepsilon}{3 M_{1}}\|x\| \\
& <\varepsilon .
\end{aligned}
$$

(13) Consider $f_{n}(x)=n^{1 / p} \chi(n x)$ in $L^{p}(\mathbb{R})$. Then $f_{n} \rightharpoonup 0$ for $p>1$ but not for $p=1$. Here $\chi=\chi_{[0,1]}$.

Solution. For $1<p<\infty$, let $q$ be the conjugate exponent and let $g \in L^{q}(\mathbb{R})$. By Hölder's
inequality and Lebesgue's dominated convergence theorem,

$$
\begin{aligned}
\int_{\mathbb{R}} f_{n} g d x & =\int_{0}^{\frac{1}{n}} n^{1 / p} g(x) d x \\
& \leq\left(\int_{0}^{\frac{1}{n}}\left(n^{1 / p}\right)^{p} d x\right)^{\frac{1}{p}}\left(\int_{0}^{\frac{1}{n}}|g(x)|^{q} d x\right)^{\frac{1}{q}} \\
& \leq\left(\int_{\mathbb{R}} \chi_{\left[0, \frac{1}{n}\right]}|g(x)|^{q} d x\right)^{\frac{1}{q}} \\
& \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Hence, $f_{n} \rightharpoonup 0$.
For $p=1$, take $g \equiv 1$ in $L^{\infty}(\mathbb{R})$. Then

$$
\int_{\mathbb{R}} f_{n} g d x=n \int_{0}^{\frac{1}{n}} d x=1
$$

Hence, $f_{n} \nrightarrow 0$.
(14) Let $\left\{f_{n}\right\}$ be bounded in $L^{p}(\mu), 1<p<\infty$. Prove that if $f_{n} \rightarrow f$ a.e., then $f_{n} \rightharpoonup f$. Is this result still true when $p=1$ ?

Solution. It suffices to show that for any $g \in L^{q}(\mu)$,

$$
\int\left(f_{n}-f\right) g d \mu \rightarrow 0 \text { as } n \rightarrow \infty
$$

By Prop 4.14 the density theorem, we may consider the case where g is a simple function with finite support. Let $E$ be a finite measure set such that $g=0$ outside $E$ and $M>0$ be bound of $g$. By a previous problem, $\left\{f_{n}, f\right\}$ is uniformly integrable, for all $\varepsilon>0, \exists \delta>0$, s.t. for any $A$ measurable s.t $\mu(A)<\delta$,

$$
\int_{A}|h| d \mu<\varepsilon, h=f_{n} \text { or } f .
$$

By Egorov's Theorem, there is a measurable $B$ s.t $\mu(E \backslash B)<\delta$ and $f_{n}$ converges uniformly
to $f$ on $B$. Hence

$$
\begin{aligned}
\left|\int\left(f_{n}-f\right) g d \mu\right| & =\left|\int_{E}\left(f_{n}-f\right) g d \mu\right| \\
& =\left|\int_{E \backslash B}\left(f_{n}-f\right) g d \mu\right|+\left|\int_{B}\left(f_{n}-f\right) g d \mu\right| \\
& <2 M \varepsilon+\left|\int_{B}\left(f_{n}-f\right) g d \mu\right| \\
& <(2 M+1) \varepsilon, \text { for large } \mathrm{n} .
\end{aligned}
$$

An alternate approach is, using the $L^{p}$-boundedness, a subsequence of $f_{n}$ weakly converges to some $g \in L^{p}(\mu)$. Then a convex combination of this subsequence converges strongly to $g$. Hence it has a subsequence converges pointwisely to $g$. On the other hand, the whole sequence converges pointwisely to $f$. So $g=f$. We have shown that every weakly convergent subsequence of $\left\{f_{n}\right\}$ must converge pointwisely to $f$. Now, suppose that $f_{n}$ does not converge weakly to $f$. There are $\rho>0$ and $g \in L^{q}$, such that

$$
\left|\int f_{n_{k}} g d \mu-\int f g d \mu\right|>\rho, \quad \forall n_{k}
$$

for some subsequence $f_{n_{k}}$. But we can find a subsequence from this subsequence which converges weakly to $f$, contradiction holds.

For $\mathrm{p}=1$, the result is false by the last problem.
(15) The construction of Cantor diagonal sequence. Let $f_{n}$ be a sequence of real-valued functions defined on some set and $\left\{x_{k}\right\}$ a subset of this set. Suppose that there is some $M$ such that $\left|f_{n}\left(x_{k}\right)\right| \leq M$ for all $n, k$. Show that there is a subsequence $\left\{f_{n_{j}}\right\}$ satisfying $\lim _{j \rightarrow \infty} f_{n_{j}}\left(x_{k}\right)$ exists for each $x_{k}$.

Solution. Let $A=\left\{x_{j}\right\}, j \geq 1$. Since $\left\{f_{n}\left(x_{1}\right)\right\}$ is a bounded sequence, we can extract a subsequence $\left\{f_{n}^{1}\right\}$ such that $\left\{f_{n}^{1}\left(x_{1}\right)\right\}$ is convergent. Next, as $\left\{f_{n}^{1}\left(x_{2}\right)\right\}$ is bounded, it has a subsequence $\left\{f_{n}^{2}\right\}$ such that $\left\{f_{n}^{2}\left(x_{2}\right)\right\}$ is convergent. Keep doing in this way, we obtain sequences $\left\{f_{n}^{j}\right\}$ satisfying (i) $\left\{f_{n}^{j+1}\right\}$ is a subsequence of $\left\{f_{n}^{j}\right\}$ and (ii) $\left\{f_{n}^{j}\left(x_{1}\right)\right\},\left\{f_{n}^{j}\left(x_{2}\right)\right\}, \cdots,\left\{f_{n}^{j}\left(x_{j}\right)\right\}$ are convergent. Then the diagonal sequence $\left\{g_{n}\right\}, g_{n}=f_{n}^{n}$, for all $n \geq 1$, is a subsequence of $\left\{f_{n}\right\}$ which converges at every $x_{j}$.

