Solution to MATH5011 homework 7

(1) Provide two proofs that $C[0,1]$ is an infinite dimensional vector space.

Solution:

First proof. It is clear that $\left\{x^{n}: n=0,1, \ldots\right\}$ forms a basis for the subspace $P[0,1] \subset C[0,1]$ of polynomials on $[0,1]$. Hence $\operatorname{dim} C[0,1] \geq \operatorname{dim} P[0,1]=\infty$.

Second proof. Pick continuous function f_{n} with support inside $(1 /(n+1), 1 / n)$. Clearly f_{n} 's are linearly independent. The subspace they form are of infinite dimension already.
(2) Show that both $C_{c}(0,1)$ and $C^{1}(0,1)$ are not closed subspaces in $C[0,1]$ and hence they are not Banach space.

Solution: For $C_{c}(0,1)$, we consider $f_{n}, n>1$,

$$
f_{n}(x)= \begin{cases}0 & \text { if } x \in\left(0, \frac{1}{2 n}\right), \\ \text { linear } & \text { if } x \in\left[\frac{1}{2 n}, \frac{1}{n}\right), \\ \frac{1}{2}-\left|x-\frac{1}{2}\right| & \text { if } x \in\left[\frac{1}{n}, 1-\frac{1}{n}\right), \\ \text { linear } & \text { if } x \in\left[1-\frac{1}{n}, 1-\frac{1}{2 n}\right), \\ 0 & \text { if } x \in\left[1-\frac{1}{2 n}, 1\right) .\end{cases}
$$

Obviously, $f_{n} \rightarrow \frac{1}{2}-\left|x-\frac{1}{2}\right|$ uniformly on $(0,1)$ and hence $C_{c}(0,1)$ is not closed.
For $C^{1}(0,1)$, we consider the following example:

$$
f_{n}(x)=\sqrt{\left(x-\frac{1}{2}\right)^{2}+\frac{1}{n}} .
$$

with

$$
f_{n}^{\prime}(x)=\frac{\left(x-\frac{1}{2}\right)}{\sqrt{\left(x-\frac{1}{2}\right)^{2}+\frac{1}{n}}}
$$

and both are continuous on $[0,1]$. Obviously $f_{n}(x) \rightarrow f(x):=|(x-1 / 2)|$ pointwisely with
the limit does not belong to $C^{1}[0,1]$. Moreover

$$
\begin{aligned}
\left|f-f_{n}(x)\right| & =\left|\sqrt{\left(x-\frac{1}{2}\right)^{2}+\frac{1}{n}}-\sqrt{\left(x-\frac{1}{2}\right)^{2}}\right| \\
& =\left|\frac{\frac{1}{n}}{\sqrt{\left(x-\frac{1}{2}\right)^{2}+\frac{1}{n}}+\sqrt{\left(x-\frac{1}{2}\right)^{2}}}\right| \\
& \leq \frac{\frac{1}{n}}{\sqrt{\left(x-\frac{1}{2}\right)^{2}+\frac{1}{n}}} \\
& \leq \frac{1}{\sqrt{n}}
\end{aligned}
$$

Hence $\left\|f-f_{n}\right\|_{\infty} \rightarrow 0$. and the $C^{1}(0,1)$ is not closed
(3) Endow $C[0,1]$ with the norm $\|f\|=\int_{0}^{1}|f(x)| d x$. Determine whether it is complete or not. Solution: The space is not complete, we consider $f_{n}, n>1$,

$$
\begin{gathered}
f_{n}(x)= \begin{cases}1 & \text { if } x \in\left[0, \frac{1}{2}-\frac{1}{n}\right), \\
\text { linear } & \text { if } x \in\left[\frac{1}{2}-\frac{1}{n}, \frac{1}{2}+\frac{1}{n}\right], \\
-1 & \text { if } x \in\left[\frac{1}{2}+\frac{1}{n}, 1\right] .\end{cases} \\
\forall m>n,\left\|f_{m}-f_{n}\right\|<\frac{2}{n} \rightarrow 0 .
\end{gathered}
$$

Then $\left\{f_{n}\right\}$ is Cauchy and obviously there is no $f \in C[0,1]$ s.t. $\left\|f-f_{n}\right\| \rightarrow 0$.
(4) Let $C_{0}(X)$ be the space of all continuous functions vanishing at infinity where X be a locally compact Hausdorff space under the supernorm. A function is called vanishing at infinity if for each $\varepsilon>0$, there exists a compact set K such that $|f(x)|<\varepsilon$ for all $x \in X \backslash K$. Show that $C_{0}(X)$ is the completion of $C_{c}(X)$. In other words, $C_{0}(X)$ is complete and $\overline{C_{c}(X)}=C_{0}(X)$. Solution. Let $C_{b}(X)$ be the space of all bounded, continuous functions in X. It is undergraduate thing to show $C_{b}(X)$ is complete under the sup-norm. (You may have done it when X is \mathbb{R}, but the proof is the same.) Using $C_{0}(X) \subset C_{b}(X)$, it suffices to show that $C_{0}(X)$ is closed. Let $\left\{f_{n}\right\}$ be a sequence in $C_{0}(X)$ converging to some $f \in C_{b}(X)$. For $\varepsilon>0$, $\left|f_{n}(x)-f(x)\right| \leq\left\|f_{n}-f\right\|_{\infty}<\varepsilon / 2$ for all x and $n \geq n_{0}$. As $f_{n_{0}} \in C_{0}$, there exists a compact set K such that $f_{n_{0}}<\varepsilon / 2$ outside K. It follows that $|f| \leq\left\|f_{n_{0}}-f\right\|_{\infty}+\left|f_{n_{0}}\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon$ outside K. To show that C_{c} is dense in C_{0}, let $f \in C_{0}$. For $\varepsilon>0$, there is a compact K
such that $|f|<\varepsilon / 2$ outside K. Let $\varphi \in C_{c}(X)$ with $K<\varphi$ and set $g=\varphi f$. Then $f=g$ in K and $|f-g|<|f|+|g|<\varepsilon / 2+\varepsilon / 2=\varepsilon$.
(5) Show that the space of bounded sequences, ℓ^{∞}, is not separable. Hint: Consider all sequences of the form $a=\left(a_{1}, a_{2}, \cdots\right)$ where $a_{j} \in\{0,1\}$.

Solution. There are uncountably many sequences of the form suggested in the hint (they can be put in one-to-one correspondence with the real numbers in $[0,1]$ via binary representation.) And each pair have distance one. Every dense set will have nonempty intersection with each ball and so it is uncountable.
(6) Let Λ be a bounded linear functional on the normed space X. Show that its operator norm

$$
\begin{aligned}
\|\Lambda\|_{o p} & =\sup \left\{\frac{\Lambda x}{\|x\|}: x \neq 0\right\} \\
& =\inf \{M:|\Lambda x| \leq M\|x\|, \forall x \in X\}
\end{aligned}
$$

Solution: To prove the first equality, note that

$$
\|\Lambda\|_{o p}=\sup \left\{\max \left(\frac{\Lambda x}{\|x\|}, \frac{\Lambda(-x)}{\|-x\|}\right): x \neq 0\right\}=\sup \left\{\frac{\Lambda x}{\|x\|}: x \neq 0\right\} .
$$

For the second, we have $|\Lambda x| \leq\|\Lambda\|_{o p}\|x\|$, which implies

$$
\|\Lambda\|_{o p} \geq \inf \{M:|\Lambda x| \leq M\|x\|, \forall x \in X\}
$$

Also, if M has $|\Lambda x| \leq M\|x\|, \forall x \in X$, then $\frac{|\Lambda x|}{\|x\|} \leq M$, which gives $\|\Lambda\|_{o p} \leq M$. Taking inf on both sides, we have

$$
\|\Lambda\|_{o p} \leq \inf \{M:|\Lambda x| \leq M\|x\|, \forall x \in X\}
$$

(7) Show that a linear functional in a normed space is bounded if and only if its kernel is closed. Solution. Let Λ be a bounded functional. The $\operatorname{ker} \lambda=\Lambda^{-1}(\{0\})$ is closed by continuity. On the other hand, if y_{n} satisfies $\left\|y_{n}\right\| \leq M$ but $\left|\Lambda y_{n}\right| \geq n$. The vectors $x_{n}=y_{n} / \Lambda y_{n}$ satisfies $\Lambda x_{n}=1$, so $\Lambda\left(x_{n}-x_{1}\right)=0$ for all n. But $\lim _{n \rightarrow \infty}\left(x_{n}-x_{1}\right)=-x_{1}$, but $\Lambda x_{1} \neq 0$.
(8) For any normed space $(X,\|\cdot\|)$, prove that $\left(X^{\prime},\|\cdot\|_{o p}\right)$ forms a Banach space.

Solution. It is clear that X^{\prime} is a vector space and $\|\cdot\|_{o p}$ is a norm on X^{\prime}. It suffices to prove the completeness.

Suppose $\left\{\Lambda_{n}\right\}$ is Cauchy in $\left(X^{\prime},\|\cdot\|_{o p}\right)$, i.e.

$$
\forall \varepsilon>0, \exists N \text { such that } \forall m, n \geq N,\left\|\Lambda_{m}-\Lambda_{n}\right\|_{o p}<\varepsilon .
$$

For any $x \in X$, the inequality $\left\|\Lambda_{m} x-\Lambda_{n} x\right\| \leq\left\|\Lambda_{m}-\Lambda_{n}\right\|_{o p}\|x\|$ shows that $\left\{\Lambda_{n} x\right\}$ is Cauchy in the scalar field, hence convergent. Define Λ by $\Lambda x=\lim _{n \rightarrow \infty} \Lambda_{n} x$. It is straightforward to verify that Λ is bounded, linear and, in view of

$$
\left\|\Lambda_{n}-\Lambda\right\|_{o p}=\sup _{\|x\|=1}\left|\Lambda_{n} x-\Lambda x\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

we conclude that the dual space of a normed space is always complete. The completeness is in fact inherited from the completeness of the scalar field \mathbb{R}.
(9) Consider $C[-1,1]$ under the sup-norm. Let

$$
X=\left\{f \in C[-1,1]: \int_{-1}^{0} f=\int_{0}^{1} f=0\right\}
$$

and $g \in C[-1,1]$ satisfy $\int_{0}^{1} g=1, \int_{-1}^{0} g=-1$. Establish the followings:
(a) X is a closed subspace of $C[-1,1]$.
(b) $\|g-f\|_{\infty}>1, \forall f \in X$.
(c) $\operatorname{dist}(g, X)=1$.

Hint: $\int_{0}^{1}(g-f)=0$ if and only if $g \equiv f$. This example shows that the projection property does not hold in $\left(C[-1,1],\|\cdot\|_{\infty}\right)$.

Solution. (a) is straightforward. For (b), we observe

$$
\int_{0}^{1}(g-f)=1, \quad \forall f \in X
$$

Therefore, by continuity either $\max _{x \in[0,1]}(g-f)(x)>1$ or $g-f \equiv 1$ on $[0,1]$. Similarly,

$$
\int_{-1}^{0}(g-f)=-1
$$

implies either $\min _{x \in[-1,0]}(g-f)(x)<-1$ or $g-f \equiv-1$ on $[-1,0]$. Since g is continuous, it cannot equal to 1 on $[0,1]$ and -1 on $[-1,0]$, either $\max _{x \in[0,1]}(g-f)(x)>1$ or $\min _{x \in[-1,0]}(g-$ $f)(x)<-1$ must hold, so $\|g-f\|_{\infty}>1$. This is (b).

Finally, one can find a sequence $\left\{f_{n}\right\}$ in X that $\left\|g-f_{n}\right\|_{\infty} \rightarrow 1$, so $\operatorname{dist}(g, X)=1$, so (c) holds.
(10) Let X be a Hilbert space and X_{1} a proper closed subspace. For x_{0} lying outside X_{1}, let $d=\left\|x_{0}-z\right\|$ where d is the distance from x_{0} to X_{1}. Show that

$$
\left\langle x, z-x_{0}\right\rangle=0, \quad \forall x \in X_{1} .
$$

Hint: For $x \in X_{1}$, one has $\frac{d}{d t} \phi(t)=0$ at $t=0$ where $\phi(t)=\left\|z_{0}+t x-x_{0}\right\|^{2}$. Why?

Solution. Since $\phi(t)$ attains its minimum at $t=0$, we have $\phi^{\prime}(0)=0$. It is easy to see that

$$
\begin{aligned}
\phi^{\prime}(t) & =\frac{d}{d t}\left\langle z_{0}+t x-x_{0}, z_{0}+t x-x_{0}\right\rangle \\
& =2\left\langle x, z_{0}+t x-x_{0}\right\rangle .
\end{aligned}
$$

Putting $t=0$ yields the result.
(11) Show that the correspondence $\Lambda \mapsto w$ in Theorem 4.8 is norm preserving.

Solution. By Cauchy-Schwarz inequality, $\forall x \in X$,

$$
|\Lambda(x)|=|\langle x, w\rangle| \leq\|x\|\|w\|
$$

With equality holds when $x=w$. Hence $\|\Lambda\|_{o p}=\|w\|$ and the map is norm preserving.
(12) Let Λ_{1} and Λ_{2} be two bounded linear functionals on the Hilbert space X. Suppose that they have the same kernel. Prove that there exists a nonzero constant c such that $\Lambda_{2}=c \Lambda_{1}$. Use this fact to give a proof of Theorem 4.8

Solution. We may suppose kernel of Λ_{1} and Λ_{2} is a proper subspace of X and $\exists x_{0} \in$ $X, \Lambda_{1}\left(x_{0}\right), \Lambda_{2}\left(x_{0}\right) \neq 0$, then $\forall x \in X$,

$$
\begin{aligned}
\Lambda_{1}\left(x-\frac{\Lambda_{1}(x)}{\Lambda_{1}\left(x_{0}\right)} x_{0}\right) & =\Lambda_{1}(x)-\frac{\Lambda_{1}(x)}{\Lambda_{1}\left(x_{0}\right)} \Lambda_{1}\left(x_{0}\right) \\
& =0
\end{aligned}
$$

As the two functionals have the same kernel, we have

$$
\begin{aligned}
\Lambda_{2}\left(x-\frac{\Lambda_{1}(x)}{\Lambda_{1}\left(x_{0}\right)} x_{0}\right) & =\Lambda_{2}(x)-\frac{\Lambda_{1}(x)}{\Lambda_{1}\left(x_{0}\right)} \Lambda_{2}\left(x_{0}\right) \\
& =0
\end{aligned}
$$

Hence

$$
\Lambda_{2}=\frac{\Lambda_{2}\left(x_{0}\right)}{\Lambda_{1}\left(x_{0}\right)} \Lambda_{1}
$$

Now Let Λ be a non zero bounded linear functional on X and x_{0} not in $\operatorname{ker} \Lambda$, then $\exists z \in \operatorname{ker} \Lambda$ s.t.

$$
\left\langle x, x_{0}-z\right\rangle=0, \forall x \in \operatorname{ker} \Lambda .
$$

Theorem 4.8 follows by letting $\Lambda(x)=\Lambda_{2}(x)$ and $\left\langle x, x_{0}-z\right\rangle=\Lambda_{1}(x)$.

