Solution to MATH5011 homework 2

(1) Let g be a measurable function in $[0, \infty]$. Show that

$$
m(E)=\int_{E} g d \mu
$$

defines a measure on \mathcal{M}. Moreover,

$$
\int_{X} f d m=\int_{X} f g d \mu, \quad \forall f \text { measurable in }[0, \infty] .
$$

Solution: We readily check that
(1) $m(\phi)=0$;
(2) $m(E) \geq 0, \forall E \in M$;
(3) For mutually disjoint $A_{k} \in M$,

$$
m\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\int_{X} \sum_{k=1}^{\infty} \chi_{A_{k}} g d \mu=\sum_{k=1}^{\infty} \int \chi_{A_{k}} g d \mu=\sum_{k=1}^{\infty} m\left(A_{k}\right)
$$

by monotone convergence theorem, since $\sum_{k=1}^{n} \chi_{A_{k}} g \uparrow \sum_{k=1}^{\infty} \chi_{A_{k}} g$.

To prove the last assertion, consider the following cases:
(a) $f=\chi_{E}$ for some $E \in M$.

$$
\int_{X} f d m=\int_{E} d m=m(E)=\int_{E} g d \mu=\int_{X} \chi_{E} g d \mu=\int_{X} f g d \mu
$$

(b) f is a non-negative simple function.

This follows from (a).
(c) f is a non-negative measurable function.

Pick a sequence $s_{n} \geq 0$ of simple functions such that $s_{n} \uparrow f$ pointwisely.

Then $0 \leq s_{n} g \uparrow g$ pointwisely. From (b),

$$
\int_{X} s_{n} d m=\int_{X} s_{n} g d \mu
$$

Taking $n \rightarrow \infty$, by monotone convergence theorem, we have

$$
\int_{X} f d m=\int_{X} f g d \mu
$$

(2) Let $\left\{f_{k}\right\}$ be measurable in $[0, \infty]$ and $f_{k} \downarrow f$ a.e., f measurable and $\int f_{1} d \mu<$ ∞. Show that

$$
\lim _{k \rightarrow \infty} \int f_{k} d \mu=\int f d \mu
$$

What happens if $\int f_{1} d \mu=\infty$?
Solution: From the assumption we know the integrability of f_{1} implies that all f_{k} are integrable. Without loss of generality, we may suppose $f_{k} \downarrow f$ pointwisely. (Otherwise, replace by X by $Y=X \backslash N$, such that $\mu(N)=0$ and $f_{k} \downarrow f$ on Y.) Then $0 \leq f_{1}-f_{k} \uparrow f_{1}-f$. By monotone convergence theorem,

$$
\lim _{k \rightarrow \infty} \int_{X}\left(f_{1}-f_{k}\right) d \mu=\int_{X}\left(f_{1}-f\right) d \mu
$$

Since $\int_{X} f_{1} d \mu<\infty$, we can cancel it from both sides to yield the result. If $\int_{X} f_{1} d \mu=\infty$, the result does not hold. For example, one may take $X=\mathbb{R}$, $f_{k}(x)=1 / k$ and $f=0$. Then

$$
\int_{X} f d \mu=0, \text { while } \int_{X} f_{k} d \mu=\infty, \forall k \in N
$$

(3) Let f be a measurable function. Show that there exists a sequence of simple functions $\left\{s_{j}\right\},\left|s_{1}\right| \leq\left|s_{2}\right| \leq\left|s_{3}\right| \leq \cdots$, and $s_{k}(x) \rightarrow f(x), \forall x \in X$.

Solution: Choose sequences of non-negative simple functions $s_{j}^{+} \uparrow f_{+}$and
$s_{j}^{-} \uparrow f_{-}$. Put $s_{j}=s_{j}^{+} \chi_{\{x: f(x) \geq 0\}}-s_{j}^{-} \chi_{\{x: f(x)<0\}}$. Fix $x \in X$. If $f(x) \geq 0$ then $\left|s_{j}(x)\right|=s_{j}^{+}(x) \uparrow f_{+}$. If $f(x)<0$ then $\left|s_{j}(x)\right|=s_{j}^{-}(x) \uparrow f_{-}$. We also have

$$
s_{j}(x) \rightarrow f_{+} \chi_{\{x: f(x) \geq 0\}}(x)-f_{-} \chi_{\{x: f(x)<0\}}(x)=f(x), \quad \forall x \in X
$$

(4) Let $\mu(X)<\infty$ and f be integrable. Suppose that

$$
\frac{1}{\mu(E)} \int_{E} f d \mu \in[a, b], \forall E \in \mathcal{M}, \mu(E)>0
$$

for some $[a, b]$. Show that $f(x) \in[a, b]$ a.e..
Solution: Let $A=\{x: f(x)<a\}$ and $B=\{x: f(x)>b\}$. If $\mu(A)>0$, we will draw a contradiction. Let $A_{n}=\{x \in A: f(x)<a-1 / n\}$ so $A=\bigcup_{n} A_{n}$. As $\left\{A_{n}\right\}$ is an ascending family tending to A, we can find some n_{0} such that $\mu\left(A_{n_{0}}\right)>0$. Then

$$
\frac{1}{\mu\left(A_{n_{0}}\right)} \int_{A_{n_{0}}} f d \mu \leq a-\frac{1}{n_{0}},
$$

contradiction. Similarly we can treat the case $\mu(B)>0$.
(5) Let f be Lebsegue integrable on $[a, b]$ which satisfies

$$
\int_{a}^{c} f d \mathcal{L}^{1}=0
$$

for every c. Show that f is equal to 0 a.e..
Solution: We can express our assumption as

$$
\int_{a}^{c} f_{+} d \mathcal{L}^{1}=\int_{a}^{c} f_{-} d \mathcal{L}^{1}, \quad \forall c \in[a, b]
$$

Clearly this implies these two integrals holds when (a, c) is replaced by any open interval. As every open set in $[a, b]$ can be written as a countable disjoint union of open intervals, these two integrals are equal over any open set. From Lebesgue integration theory we know that for every Lebesgue measurable E,
there is an open set G containing E with the approximating measure. Thus we conclude

$$
\int_{E} f_{+} d \mathcal{L}^{1}=\int_{E} f_{+} d \mathcal{L}^{1}
$$

for all measurable E. Taking $E=\{x \in[a, b]: f(x)>0$, we see that $\int_{E} f_{+} d \mathcal{L}^{1}=0$, which implies $f \leq 0$ a.e.. By taking $E=\{x: f(x)<0\}$, we see that $f \geq 0$ a.e. . Hence $f=0$ a.e. .
(6) Let $f \geq 0$ be integrable and $\int f d \mu=c \in(0, \infty)$. Prove that

$$
\lim _{n \rightarrow \infty} \int n \log \left(1+\left(\frac{f}{n}\right)^{\alpha}\right) d \mu= \begin{cases}\infty, & \text { if } \alpha \in(0,1) \\ c, & \text { if } \alpha=1 \\ 0, & \text { if } 1<\alpha<\infty\end{cases}
$$

Solution: Let $g_{n}(x)=n \log \left(1+\left(\frac{f(x)}{n}\right)^{\alpha}\right)$. Since $\int f d \mu=c \in(0, \infty)$, we know that $\mu(\{x: f(x)=\infty\})=0$ and $\mu(\{x: f(x)>0\})>0$. Observe that

$$
\lim _{n \rightarrow \infty} g_{n}(x)= \begin{cases}\infty, & \text { on }\{x: f(x)>0\}, \text { if } \alpha<1 \\ f(x), & \text { a.e. } \mu, \text { if } \alpha=1 \\ 0, & \text { a.e. } \mu, \text { if } \alpha>1\end{cases}
$$

Moreover, if $\alpha \geq 1$, using the elementary inequalities $1+x^{\alpha} \leq(1+x)^{\alpha}$ and $\log (1+x) \leq x$ for $x \geq 0$, we have

$$
g_{n} \leq n \log \left(1+\frac{f}{n}\right)^{\alpha} \leq n \alpha \cdot \frac{f}{n}=\alpha f \in L^{1}(\mu)
$$

- Suppose $\alpha \in(0,1)$. By Fatou's lemma,

$$
\underline{\lim _{n \rightarrow \infty}} \int g_{n} d \mu \geq \int \underline{\lim _{n \rightarrow \infty}} g_{n} d \mu=\infty
$$

Hence, $\lim _{n \rightarrow \infty} \int g_{n} d \mu=\infty$.

- Suppose $\alpha=1$. By Lebesgue dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} \int g_{n} d \mu=\int \lim _{n \rightarrow \infty} g_{n} d \mu=\int f d \mu=c .
$$

- Suppose $1<\alpha<\infty$. By Lebesgue dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} \int g_{n} d \mu=\int \lim _{n \rightarrow \infty} g_{n} d \mu=0
$$

(7) Let $\mu(X)<\infty$ and $f_{k} \rightarrow f$ uniformly on X and each f_{k} is bounded. Prove that

$$
\lim _{k \rightarrow \infty} \int f_{k} d \mu=\int f d \mu
$$

Can $\mu(X)<\infty$ be removed?
Solution: We assume that $\mu(X)>0$. (Otherwise, the result is trivial.) Let $\varepsilon>0$ be given. Since $f_{k} \rightarrow f$ uniformly on X, there exists natural number N such that for all $k \geq N$ and for all $x \in X$, we have

$$
\left|f_{k}(x)-f(x)\right|<\frac{\varepsilon}{\mu(X)}
$$

So, for all $k \geq N$, we have

$$
\left|\int f_{k} d \mu-\int f d \mu\right| \leq \int\left|f_{k}-f\right| d \mu<\varepsilon
$$

The result follows.
If $\mu(X)=\infty$, the result no longer holds. One may take $X=R, f_{k}(x)=1 / k$, $f(x)=0$ and μ to be the Lebesgue measure. Then $f_{k} \rightarrow f$ uniformly on X and each f_{k} is bounded,

$$
\int f d \mu=0, \text { while } \int f_{k} d \mu=\infty, \forall k
$$

(8) Give another proof of Borel-Cantelli lemma Problem 7 in Ex 1 by integration theory. (Hint: Study $g(x)=\sum_{j=1}^{\infty} \chi_{A_{j}}(x)$.)
Solution: Let $\left\{A_{k}\right\}$ be measurable, $A=\left\{x \in X: x \in A_{k}\right.$ for infinitely many $\left.k\right\}$ and suppose $\sum_{k=1}^{\infty} \mu\left(A_{k}\right)<\infty$. Write

$$
g(x)=\sum_{j=1}^{\infty} \chi_{A_{j}}(x)
$$

Then $x \in A$ if and only if $g(x)=\infty$. By Fatou's lemma,

$$
\int g d \mu \leq \sum_{j=1}^{\infty} \int \chi_{A_{j}} d \mu=\sum_{j=1}^{\infty} \mu\left(A_{j}\right)<\infty
$$

As a consequence of Markov's inequality, g is finite a.e., the conclusion follows. This problem shows the power by expressing things in terms of measurable functions.
(9) Let f be a Riemann integrable function on $[a, b]$ and extend it to \mathbb{R} by setting it zero outside $[a, b]$.
(a) Show that f is Lebsegue measurable.
(b) Show that the Riemann integral of f is equal to $\int_{\mathbb{R}} f d \mathcal{L}^{1}$.
(c) Give an example of a sequence of Riemann integrable functions which is uniformly bounded on $[a, b]$ and converges pointwisely to some function which is not Riemann integrable.

Solution:

(a) We assume the result and notation in question 10 of exercise 1 , by the proof of 10 b), f is Riemann integrable on $[a, b]$ if and only if $\bar{R}(f)=\underline{R}(f)$. When this holds, $L=\bar{R}(f)=\underline{R}(f)$. Then for all natural number n, we
may find partition of [a,b], $P_{n}=\left\{a=z_{0}<z_{1}<\ldots<z_{m_{n}}=b\right\}$ such that

$$
0 \leq \bar{R}\left(P_{n}, f\right)-\underline{R}\left(P_{n}, f\right) \leq \frac{1}{n}
$$

define two sequence of step function in the following way, for all x in $\left[z_{j}, z_{j+1}\right)$,

$$
\varphi_{n}(x)=\inf \left\{f(x): x \in\left[z_{j}, z_{j+1}\right]\right\}
$$

and

$$
\psi_{n}(x)=\sup \left\{f(x): x \in\left[z_{j}, z_{j+1}\right]\right\} .
$$

For all x in $[a, b]$

$$
h(x)=\sup \left\{\varphi_{n}(x): n \in N\right\}
$$

and

$$
g(x)=\inf \left\{\psi_{n}(x): n \in N\right\}
$$

h and g are obviously Lebesgue measurable, we also have $\varphi_{n}(x) \leq h \leq$ $f \leq g \leq \psi_{n}(x)$. For any natural number n,

$$
0 \leq \int_{a}^{b}(g-h) d \mathcal{L}^{1} \leq \int_{a}^{b}\left(\psi_{n}-\varphi_{n}\right) d \mathcal{L}^{1}=\bar{R}\left(P_{n}, f\right)-\underline{R}\left(P_{n}, f\right) \leq \frac{1}{n}
$$

so we have $h=f=g$ a.e. and f is Lebesgue measurable.
(b) By taking refinement with the partition $\left\{a=z_{0}<z_{1}=a+(b-a) / n<\right.$ $\left.. .<z_{j}=a+j(b-a) / n<.<z_{m_{n}}=b\right\}$ if necessary, we may assume the norm of partition P_{n} in (a) tend to 0 as $n \rightarrow 0$. As φ_{n} and ψ_{n} are integrable and $|f(x)| \leq\left|\varphi_{n}(x)\right|+\left|\psi_{n}(x)\right|$ for all x in $[a, b], f$ is Lebesgue integrable and

$$
\underline{R}\left(P_{n}, f\right)=\int_{a}^{b} \varphi_{n} d \mathcal{L}^{1} \leq \int_{a}^{b} f d \mathcal{L}^{1} \leq \int_{a}^{b} \psi_{n} d \mathcal{L}^{1}=\bar{R}\left(P_{n}, f\right)
$$

Using result in 10(b) of Ex. 1 and let n go to ∞, we have Riemann

$$
\text { integral }=\int_{R} f d \mathcal{L}^{1}
$$

(c) We consider the famous Dirichlet function g which is not Riemann integrable, $g(x)=1$ if x is rational and $\in[0,1], g(x)=0$ otherwise. Let $\left\{q_{n}: n \in N\right\}$ be an enumeration of all rational number in $[0,1]$ and define

$$
f_{n}=\sum_{i=1}^{n} \chi_{q_{i}} .
$$

Then each f_{n} is obviously uniformly bounded Riemann integrable with zero integral and yet $\left\{f_{n}\right\}$ converges pointwisely to the Dirichlet function for all x in $[0,1]$.
(10) Let f be integrable in (X, \mathcal{M}, μ). Show that for each $\varepsilon>0$, there is some δ such that

$$
\int_{E}|f|<\varepsilon, \quad \text { whenever } E \in \mathcal{M}, \mu(E)<\delta
$$

This is called the absolute continuity of an integrable function.
Solution. Assume on the contrary there is some $\varepsilon_{0}>0$ and $E_{j}, \mu\left(E_{n}\right) \leq 2^{-n}$, such that $\int_{E_{n}}|f| d \mu \geq \varepsilon_{0}$. Let $A_{n}=\bigcup_{j \geq n} E_{j}$. Then

$$
\mu\left(A_{n}\right) \leq \sum_{j \geq n} \mu\left(E_{j}\right) \leq \sum_{j \geq n} \frac{1}{2^{j}}=\frac{1}{2^{n-1}}
$$

Let $A=\cap_{n} A_{n}$. As $\left\{A_{n}\right\}$ is descending and $\mu\left(A_{1}\right)$ is finite,

$$
\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0
$$

that is, A is of measure zero. On the other hand, we have $|f| \chi_{A_{n}} \leq|f|$, by the dominated convergence theorem we have

$$
\int_{A}|f| d \mu=\lim _{n \rightarrow \infty} \int_{A_{n}}|f| d \mu \geq \varepsilon_{0}>0
$$

contradiction holds.

