
Solution to MATH5011 homework 2
(1) Let g be a measurable function in [0,∞]. Show that

m(E) =

∫
E

g dµ

defines a measure on M. Moreover,

∫
X

f dm =

∫
X

fg dµ, ∀f measurable in [0,∞].

Solution: We readily check that

(1) m(ϕ) = 0;

(2) m(E) ≥ 0, ∀E ∈M ;

(3) For mutually disjoint Ak ∈M ,

m

(
∞∪
k=1

Ak

)
=

∫
X

∞∑
k=1

χAk
g dµ =

∞∑
k=1

∫
χAk

g dµ =
∞∑
k=1

m(Ak)

by monotone convergence theorem, since
n∑

k=1

χAk
g ↑

∞∑
k=1

χAk
g.

To prove the last assertion, consider the following cases:

(a) f = χE for some E ∈M .

∫
X

f dm =

∫
E

dm = m(E) =

∫
E

g dµ =

∫
X

χEg dµ =

∫
X

fg dµ.

(b) f is a non-negative simple function.

This follows from (a).

(c) f is a non-negative measurable function.

Pick a sequence sn ≥ 0 of simple functions such that sn ↑ f pointwisely.
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Then 0 ≤ sng ↑ g pointwisely. From (b),

∫
X

sn dm =

∫
X

sng dµ.

Taking n→ ∞, by monotone convergence theorem, we have

∫
X

f dm =

∫
X

fg dµ.

(2) Let {fk} be measurable in [0,∞] and fk ↓ f a.e., f measurable and
∫
f1 dµ <

∞. Show that

lim
k→∞

∫
fk dµ =

∫
f dµ.

What happens if
∫
f1 dµ = ∞?

Solution: From the assumption we know the integrability of f1 implies that

all fk are integrable. Without loss of generality, we may suppose fk ↓ f

pointwisely. (Otherwise, replace by X by Y = X \ N , such that µ(N) = 0

and fk ↓ f on Y .) Then 0 ≤ f1 − fk ↑ f1 − f . By monotone convergence

theorem,

lim
k→∞

∫
X

(f1 − fk) dµ =

∫
X

(f1 − f) dµ.

Since
∫
X

f1 dµ <∞, we can cancel it from both sides to yield the result.

If
∫
X
f1 dµ = ∞, the result does not hold. For example, one may take X = R,

fk(x) = 1/k and f = 0. Then

∫
X

f dµ = 0, while
∫
X

fk dµ = ∞, ∀k ∈ N.

(3) Let f be a measurable function. Show that there exists a sequence of simple

functions {sj}, |s1| ≤ |s2| ≤ |s3| ≤ · · · , and sk(x) → f(x), ∀x ∈ X.

Solution: Choose sequences of non-negative simple functions s+j ↑ f+ and
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s−j ↑ f−. Put sj = s+j χ{x:f(x)≥0} − s−j χ{x:f(x)<0}. Fix x ∈ X. If f(x) ≥ 0 then

|sj(x)| = s+j (x) ↑ f+. If f(x) < 0 then |sj(x)| = s−j (x) ↑ f−. We also have

sj(x) → f+χ{x:f(x)≥0}(x)− f−χ{x:f(x)<0}(x) = f(x), ∀x ∈ X.

(4) Let µ(X) <∞ and f be integrable. Suppose that

1

µ(E)

∫
E

f dµ ∈ [a, b], ∀E ∈ M, µ(E) > 0

for some [a, b]. Show that f(x) ∈ [a, b] a.e..

Solution: Let A = {x : f(x) < a} and B = {x : f(x) > b}. If µ(A) > 0, we

will draw a contradiction. Let An = {x ∈ A : f(x) < a−1/n} so A =
∪

nAn.

As {An} is an ascending family tending to A, we can find some n0 such that

µ(An0) > 0. Then
1

µ(An0)

∫
An0

fdµ ≤ a− 1

n0

,

contradiction. Similarly we can treat the case µ(B) > 0.

(5) Let f be Lebsegue integrable on [a, b] which satisfies

∫ c

a

fdL1 = 0,

for every c. Show that f is equal to 0 a.e..

Solution: We can express our assumption as

∫ c

a

f+dL1 =

∫ c

a

f−dL1, ∀c ∈ [a, b] .

Clearly this implies these two integrals holds when (a, c) is replaced by any

open interval. As every open set in [a, b] can be written as a countable disjoint

union of open intervals, these two integrals are equal over any open set. From

Lebesgue integration theory we know that for every Lebesgue measurable E,
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there is an open set G containing E with the approximating measure. Thus

we conclude ∫
E

f+dL1 =

∫
E

f+dL1,

for all measurable E. Taking E = {x ∈ [a, b] : f(x) > 0, we see that∫
E
f+dL1 = 0, which implies f ≤ 0 a.e.. By taking E = {x : f(x) < 0}, we

see that f ≥ 0 a.e. . Hence f = 0 a.e. .

(6) Let f ≥ 0 be integrable and
∫
f dµ = c ∈ (0,∞). Prove that

lim
n→∞

∫
n log

(
1 +

(
f

n

)α)
dµ =


∞, if α ∈ (0, 1)

c, if α = 1

0, if 1 < α <∞.

Solution: Let gn(x) = n log

(
1 +

(
f(x)

n

)α)
. Since

∫
f dµ = c ∈ (0,∞),

we know that µ({x : f(x) = ∞}) = 0 and µ({x : f(x) > 0}) > 0. Observe

that

lim
n→∞

gn(x) =


∞, on {x : f(x) > 0}, if α < 1,

f(x), a.e. µ, if α = 1,

0, a.e. µ, if α > 1.

Moreover, if α ≥ 1, using the elementary inequalities 1 + xα ≤ (1 + x)α and

log(1 + x) ≤ x for x ≥ 0, we have

gn ≤ n log

(
1 +

f

n

)α

≤ nα · f
n
= αf ∈ L1(µ).

• Suppose α ∈ (0, 1). By Fatou’s lemma,

lim
n→∞

∫
gn dµ ≥

∫
lim
n→∞

gn dµ = ∞.

Hence, lim
n→∞

∫
gn dµ = ∞.
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• Suppose α = 1. By Lebesgue dominated convergence theorem,

lim
n→∞

∫
gn dµ =

∫
lim
n→∞

gn dµ =

∫
f dµ = c.

• Suppose 1 < α <∞. By Lebesgue dominated convergence theorem,

lim
n→∞

∫
gn dµ =

∫
lim
n→∞

gn dµ = 0.

(7) Let µ(X) < ∞ and fk → f uniformly on X and each fk is bounded. Prove

that

lim
k→∞

∫
fk dµ =

∫
f dµ.

Can µ(X) <∞ be removed?

Solution: We assume that µ(X) > 0. (Otherwise, the result is trivial.) Let

ε > 0 be given. Since fk → f uniformly on X, there exists natural number

N such that for all k ≥ N and for all x ∈ X, we have

|fk(x)− f(x)| < ε

µ(X)
.

So, for all k ≥ N , we have∣∣∣∣∫ fk dµ−
∫
f dµ

∣∣∣∣ ≤ ∫ |fk − f | dµ < ε.

The result follows.

If µ(X) = ∞, the result no longer holds. One may take X = R, fk(x) = 1/k,

f(x) = 0 and µ to be the Lebesgue measure. Then fk → f uniformly on X

and each fk is bounded,

∫
f dµ = 0, while

∫
fk dµ = ∞, ∀k.
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(8) Give another proof of Borel-Cantelli lemma Problem 7 in Ex 1 by integration

theory. (Hint: Study g(x) =
∞∑
j=1

χAj
(x).)

Solution: Let {Ak} be measurable, A = {x ∈ X : x ∈ Ak for infinitely many k}

and suppose
∞∑
k=1

µ(Ak) <∞. Write

g(x) =
∞∑
j=1

χAj
(x).

Then x ∈ A if and only if g(x) = ∞. By Fatou’s lemma,

∫
g dµ ≤

∞∑
j=1

∫
χAj

dµ =
∞∑
j=1

µ(Aj) <∞.

As a consequence of Markov’s inequality, g is finite a.e., the conclusion follows.

This problem shows the power by expressing things in terms of measurable

functions.

(9) Let f be a Riemann integrable function on [a, b] and extend it to R by setting

it zero outside [a, b].

(a) Show that f is Lebsegue measurable.

(b) Show that the Riemann integral of f is equal to
∫
R fdL

1.

(c) Give an example of a sequence of Riemann integrable functions which is

uniformly bounded on [a, b] and converges pointwisely to some function

which is not Riemann integrable.

Solution:

(a) We assume the result and notation in question 10 of exercise 1, by the

proof of 10b), f is Riemann integrable on [a, b] if and only if R(f) = R(f).

When this holds, L = R(f) = R(f). Then for all natural number n, we
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may find partition of [a,b], Pn = {a = z0 < z1 < ... < zmn = b} such

that

0 ≤ R(Pn, f)−R(Pn, f) ≤
1

n
,

define two sequence of step function in the following way, for all x in

[zj, zj+1),

φn(x) = inf
{
f(x) : x ∈ [zj, zj+1]

}
,

and

ψn(x) = sup
{
f(x) : x ∈ [zj, zj+1]

}
.

For all x in [a, b]

h(x) = sup
{
φn(x) : n ∈ N

}
and

g(x) = inf
{
ψn(x) : n ∈ N

}
,

h and g are obviously Lebesgue measurable, we also have φn(x) ≤ h ≤

f ≤ g ≤ ψn(x). For any natural number n,

0 ≤
∫ b

a

(g − h)dL1 ≤
∫ b

a

(ψn − φn)dL1 = R(Pn, f)−R(Pn, f) ≤
1

n
,

so we have h = f = g a.e. and f is Lebesgue measurable.

(b) By taking refinement with the partition {a = z0 < z1 = a+(b− a)/n <

.. < zj = a + j(b − a)/n < .. < zmn = b} if necessary, we may assume

the norm of partition Pn in (a) tend to 0 as n → 0. As φn and ψn are

integrable and |f(x)| ≤ |φn(x)|+ |ψn(x)| for all x in [a, b], f is Lebesgue

integrable and

R(Pn, f) =

∫ b

a

φndL1 ≤
∫ b

a

fdL1 ≤
∫ b

a

ψndL1 = R(Pn, f) .

Using result in 10(b) of Ex.1 and let n go to ∞, we have Riemann
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integral =
∫
R
fdL1.

(c) We consider the famous Dirichlet function g which is not Riemann in-

tegrable, g(x) =1 if x is rational and ∈ [0, 1] , g(x) =0 otherwise. Let

{qn : n ∈ N} be an enumeration of all rational number in [0, 1] and

define

fn =
n∑

i=1

χqi .

Then each fn is obviously uniformly bounded Riemann integrable with

zero integral and yet {fn} converges pointwisely to the Dirichlet function

for all x in [0, 1].

(10) Let f be integrable in (X,M, µ). Show that for each ε > 0, there is some δ

such that ∫
E

|f | < ε, whenever E ∈ M, µ(E) < δ .

This is called the absolute continuity of an integrable function.

Solution. Assume on the contrary there is some ε0 > 0 and Ej, µ(En) ≤ 2−n,

such that
∫
En

|f |dµ ≥ ε0. Let An =
∪

j≥nEj. Then

µ(An) ≤
∑
j≥n

µ(Ej) ≤
∑
j≥n

1

2j
=

1

2n−1
.

Let A = ∩nAn. As {An} is descending and µ(A1) is finite,

µ(A) = lim
n→∞

µ(An) = 0 ,

that is, A is of measure zero. On the other hand, we have |f |χAn ≤ |f |, by

the dominated convergence theorem we have

∫
A

|f |dµ = lim
n→∞

∫
An

|f |dµ ≥ ε0 > 0 ,

contradiction holds.
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