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Example of Stationary Distributions

Recall the following theorems from lectures

Theorem 1. An irreducible positive-recurrent Markov chain has a unique stationary distribution π(i) =
1/m(i) for each state i where m(i) = Ei(Ti) < ∞ is the expected recurrent time of state i.

In particular, an irreducible finite Markov chain has a unique stationary distribution1.

Theorem 2. If P is the transition matrix of a Markov chain with a finite state space, and

� 1 is a simple eigenvalue of P

� there exists a (left) eigenvector π corresponding to 1 with all entries nonnegative πi ≥ 0

� all other eigenvalues of P have moduli less than 1

then π is the unique stationary distribution of the chain, and Pn n→∞−−−−→ (π, π, . . . , π)T, assuming π is nor-
malized to have

∑
πi = 1.

With these two theorems in mind, let us look at a few examples on stationary distributions.

Example 1. (HW4 Optional Q7) Recall that the Ehrenfest chain is a chain on state space S = {0, . . . , d}
with transition function P (x, x+ 1) = 1− x/d, P (x, x− 1) = x/d. What is its stationary distribution?

Note that Ehrenfest chain is an irreducible birth-and-death chain with forward probability px = (d−x)/d
and backward probability qx = x/d.

Stationary Distribution for general Birth-and-Death Chain

It appears that formula for stationary distribution on a (general) birth-and-death chain is left as an exercise
in the lecture notes. Here we will give a short proof on the result.
Recall that on a (general) birth-and-death chain, we have rx = P (x, x), px = P (x, x+ 1), qx = P (x, x− 1)
with q0 = 0. We will assume that the chain is irreducible by assuming that px, qx > 0. Then on a stationary
distribution π we have

π(0) = π(0)r0 + π(1)q1

or q1π(1)− p0π(0) = 0

π(x) = π(x− 1)px−1 + π(x)rx + π(x+ 1)qx+1 for x ≥ 1

or qx+1π(x+ 1)− pxπ(x) = qxπ(x)− px−1π(x− 1)

Induction implies that qx+1π(x + 1) − pxπ(x) = 0 for all x, and so π(x + 1)/π(x) = px/qx+1. Another
induction gives us

π(x) = π(0)

x−1∏
i=0

pi
qi+1

= π(0)πx

with πx =
∏x−1

i=0
pi

qi+1
= (

∏x−1
i=0 pi)/(

∏x
i=1 qi) and π0 = 1. Normalizing (if possible) gives us a stationary

distribution π(x) = πx/
∑

πi.

1You can actually show the existence and uniqueness of stationary distribution on a finite irreducible Markov chain with
irreduciblity alone, without using the concept of expected recurrent time. (Try to show it!)
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Using the formula we have

π0 = 1 =

(
d

0

)
πx = (

x−1∏
i=0

pi)/(

x∏
i=1

qx) = (

x−1∏
i=0

d− i)/(

x∏
i=1

i) = (
d!

(d− x)!
)/x! =

(
d

x

)
for x ∈ {1, . . . , d}

and
∑d

i=0 πi =
∑d

i=0

(
d
i

)
= 2d, which implies that

π(x) = πx/

d∑
i=0

πi = 2−d

(
d

x

)
is of binomial distribution. With law of large number, this approaches to a normal distribution on d → ∞,
which matches what is known in statistical mechanics. (See also the modified Ehrenfest chain in textbook)

Note. πxγxpx = p0

Example 2. Consider a chain on state space S = {1, . . . , n} = A ∪ B with A = {1, . . . , k} and B =
{k + 1, . . . , n} with 1 ≤ k < n (so A,B are nonempty), with transition matrix being

P (x, y) =


1/(n− k) if x ∈ A, y ∈ B

1/k if x ∈ B, y ∈ A

0 otherwise

(so the transition graph is completely bipartite with uniform probability of transition). What is its stationary
distribution?

Easy to see that the chain is irreducible, so there must be one (and only one) stationary distribution.
Let it be π. We can note that

π(x) =
∑
y∈B

π(y)P (y, x) =
1

k

∑
y∈B

π(y) for each x ∈ A

so
∑
x∈A

π(x) =
1

k

∑
x∈A

∑
y∈B

π(y) =
∑
y∈B

π(y)

Since 1 =
∑

π(x) =
∑

x∈A π(x)+
∑

y∈B π(y), we must have
∑

x∈A π(x) =
∑

y∈B π(y) = 1/2. By symmetry,
we can guess that

π(x) =

{
1
2k if x ∈ A

1
2(n−k) if x ∈ B

and it is easy to verify that π is indeed the stationary distribution of the chain.

Example 3. Consider a chain with transition matrix

P =


1 2 3 4
0 1 0 0
0 0 1 0

2/3 0 0 1/3
0 1 0 0


which transition diagram

1 4

23

1

1

2/3

1/3

1
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Easy to see that the chain is irreducible, so there must be a (unique) stationary distribution. To find this
distribution, we simply solve the equation π = πP , or

1 = π(1) + π(2) + π(3) + π(4)

π(1) =
2

3
π(3)

π(2) = π(1) + π(4)

π(3) = π(2)

π(4) =
1

3
π(3)

which gives π = (2/9, 1/3, 1/3, 1/9).
However, note that the eigenvalues of P are 0, 1, ei2π/3, e−i2π/3, so there are eiganvalues other than 1

that has unit modulus, so the theorem about limPn does not apply. Indeed we can compute that

P 2 =


1 2 3 4
0 0 1 0
2/3 0 0 1/3
0 1 0 0
0 0 1 0

, P 3 =


1 2 3 4

2/3 0 0 1/3
0 1 0 0
0 0 1 0

2/3 0 0 1/3

, P 4 =


1 2 3 4
0 1 0 0
0 0 1 0
2/3 0 0 1/3
0 1 0 0

 = P

so lim
n→∞

Pn does not exist2.

As a side note, we can see that by permuting the indices and computing directly that

P 3 ∼


1 4 2 3
2/3 1/3 0 0
2/3 1/3 0 0
0 0 1 0
0 0 0 1

,
1

3
(P + P 2 + P 3) =


1 2 3 4
2/9 1/3 1/3 1/9
2/9 1/3 1/3 1/9
2/9 1/3 1/3 1/9
2/9 1/3 1/3 1/9

 =


π
π
π
π


and so with a simple argument lim

n→∞
1
n

∑n
k=1 P

k = (π, π, π, π)T as well3. This is a general phenomenon and

will be covered (in detail) in later lectures.

Example 4. Consider the symmetric 1D random walk on S = Z with transition function P (x, x + 1) =
P (x, x− 1) = 1/2, which we know from tutorial 4 is an irreducible recurrent chain. What is the stationary
distribution?

Suppose π : Z → [0, 1] is a stationary distribution. Then π satisfies
∑

π(i) = 1 and for all i,

π(i) = π(i+ 1)P (i+ 1, i) + π(i+ 1)P (i+ 1, i)

=
1

2
(π(i− 1) + π(i+ 1))

and so π(i+ 1)− π(i) = π(i)− π(i− 1)

This gives π(i) = π(0)+i(π(1)−π(0)) for all i ∈ Z. Since 0 ≤ π(i) ≤ 1 for all i, we must have π(1)−π(0) = 0
and so π(i) = π(0) for all i (which is expected from translation symmetry). This contradicts the condition
that 0 <

∑
π(i) = 1 < ∞ no matter what π(0) ∈ [0, 1] is, so no such π exists.

The same argument also tells us that asymmetric 1D random walk with transition function P (x, x+1) = p,
P (x, x− 1) = 1− p, p ∈ [0, 1] has no stationary distribution.

2While the number 3 can be found by computing all Pn (or computing all eigenvalues), it can also be found efficiently with
a graph traversal, just like irreducibility with Tarjan’s algorithm. For more detail, see e.g. the article by Jarvis and Shier and
the NetworkX Python package for an implementation. Unfortunately these algorithms don’t seem to produce a certificate (e.g.
a circuit for irreducibility) on the properties.

3For an irreducible recurrent chain, P − lim 1
n

∑
k Pk plays the role of Q in absorbing chain.
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Although all constant functions f : Z → R satisfy f = fP (as row vector)4, none of them corresponds
to a probability distribution (as pmf). Whether we can normalize these functions (to have a stationary
distribution) requires additional condition on the chain (i.e. positive recurrent).

Example 5. Consider the chain on S = N with transition function P (x, x + 1) = p, P (x, 0) = 1 − p for
all x ∈ N on some p ∈ (0, 1). The chain is trivially irreducible and recurrent. What is the stationary
distribution?

A stationary distribution must satisfy
∑∞

n=0 π(n) = 1 and

π(0) =

∞∑
n=0

π(n)P (n, 0) = 1− p

π(i) = π(i− 1)P (i− 1, i) = pπ(i− 1) for n ≥ 1

Solving this gives π(n) = (1 − p)pn for n ≥ 0 when p ∈ (0, 1) (which we can verify that this is indeed a
stationary distribution).

When p = 0 the only recurrent state is 0, so easy to see that the only stationary distribution is π(n) = δn0
(which matches the result above); when p = 1 the chain has no recurrent state, so no stationary distribution
exists (neither exists a nontrivial function f with f = fP 5).

Bounded Convergence Theorem

When dealing with a chain with (countably) infinite states, we often need to interchange the order of sum
and limit. The following theorem provides justification on when we can do so.

Theorem 3 (Bounded Convergence Theorem / Tannery’s theorem). Let {fn : Z+ → R} be a sequence of
functions on positive integers that satisfies

� (uniform bound) there exists M > 0 such that | fn(x) | ≤ M for all n, x

� (pointwise convergence) on each x, lim
n→∞

fn(x) exists (and is finite)

Let p(x) ≥ 0 on x ∈ Z+ be such that
∑

x p(x) < ∞. Then we can interchange sum and limit:

lim
n→∞

∑
x

p(x)fn(x) =
∑
x

p(x) lim
n→∞

fn(x)

Proof. Let f(x) = lim
n→∞

fn(x) be the pointwise limit of fn. On each x we have | fn(x) | ≤ M and fn(x) →
f(x), so | f(x) | ≤ M and thus | p(x)f(x) | ≤ Mp(x), which implies that

∑
| p(x)f(x) | ≤ M

∑
p(x) = M <

∞ and so
∑

p(x)f(x) ∈ R is well-defined.
Let ϵ > 0. Since

∑
p(x) < ∞, there exists X such that

∑∞
x=X+1 p(x) <

ϵ
4M . This implies that∣∣∣∣∣

∞∑
x=X+1

p(x)fn(x)

∣∣∣∣∣ ≤
∞∑

x=X+1

p(x) | fn(x) | ≤ M

∞∑
x=X+1

p(x) < ϵ/4

for all n and similarly
∣∣ ∑∞

x=X+1 p(x)f(x)
∣∣ < ϵ/4.

Furthermore, as fn(x) → f(x) for all x ∈ {1, . . . , X}, there exists N such that | fn(x)− f(x) | < ϵ/2 for
all n ≥ N and for all x ∈ {1, . . . , X}.

4In fact, such function exists in general: on every recurrent state x of a (possibly infinite) chain you can always construct a
function fx : S → [0,∞) with fx(x) = 1 and f = fP : (Durrett, Probability Theory and Examples, Edition 3, Ch. 5 Thm. 4.3)
fx(y) is the expected number of visit of y from x before returning to x. See also the example on Ehrenfest chain (and general
birth-and-death chain).

5However, there may exist such nontrivial function on certain transient chains. I do not know any exact classification on
when this happens.
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So for each n ≥ N ,∣∣∣∣∣ ∑
x

p(x)fn(x)−
∑
x

p(x)f(x)

∣∣∣∣∣
=

∣∣∣∣∣
X∑

x=1

p(x)fn(x) +

∞∑
x=X+1

p(x)fn(x)−
X∑

x=1

p(x)f(x)−
∞∑

x=X+1

p(x)f(x)

∣∣∣∣∣
≤

∣∣∣∣∣
X∑

x=1

p(x)fn(x)−
X∑

x=1

p(x)f(x)

∣∣∣∣∣+
∣∣∣∣∣

∞∑
x=X+1

p(x)fn(x)

∣∣∣∣∣+
∣∣∣∣∣

∞∑
x=X+1

p(x)f(x)

∣∣∣∣∣
≤

X∑
x=1

p(x) | fn(x)− f(x) |+ ϵ

4
+

ϵ

4

≤ ϵ

2

∞∑
x=1

p(x) +
ϵ

2
= ϵ

which implies that lim
n→∞

∑
x p(x)fn(x) =

∑
x p(x)f(x).

With some modification we can actually show that the same result holds if | fn(x) | ≤ M(x) and∑
x p(x)M(x) < ∞. These are all special cases of Lebesgue’s dominated convergence theorem, for which

the statement and the proof can be found in most standard textbooks on measure theory (and MATH4050).
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