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Example for transition matrix in the long-time limit

Recall that the following proposition from lecture:

Theorem 1. If P is the transition matrix of a (finite) Markov chain, and

� 1 is a simple eigenvalue of P

� there exists a left eigenvector π of P corresponding to 1 having nonnegative entries

� all other (complex) eigenvalues of P have moduli less than 1

then lim
n→∞

Pn = (π, π, . . . , π)T, assuming π is normalized to have
∑

πi = 1

Consider again the Markov chain with transition matrix from the previous tutorial

P =



1 2 3 4 5 6 7
1 0 0 1/2 0 0 1/2 0
2 0 1/3 0 0 2/3 0 0
3 1/2 0 0 0 0 1/2 0
4 0 0 0 1/2 0 0 1/2
5 0 1/2 0 0 1/2 0 0
6 1/2 0 1/2 0 0 0 0
7 1/3 1/4 1/6 0 1/4 0 0


with transition diagram
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We want to compute lim
n→∞

Pn.

Let us first rewrite the matrix in canonical form1 by grouping the states together

Pcanonical =



1 3 6 2 5 4 7
1 0 1/2 1/2 0 0 0 0
3 1/2 0 1/2 0 0 0 0
6 1/2 1/2 0 0 0 0 0
2 0 0 0 1/3 2/3 0 0
5 0 0 0 1/2 1/2 0 0
4 0 0 0 0 0 1/2 1/2
7 1/3 1/6 0 1/4 1/4 0 0


=

P1 0 0
0 P2 0
S1 S2 Q



1I don’t think there is a standard notation for canonical form, so I will just use whatever is convenient.
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here the states are arranged such that whenever i is listed before j, state i does not lead to state j unless they
are in the same irreducible closed set or are both transient, so Pcanonical is upper triangular block matrix.
We will work exclusively on the fundamental form and only convert back to the original form at the end.

Recall from last tutorial session, the limit transition matrix lim
n→∞

P̃n on the absorbing chain

P̃ =


C1 C2 4 7

C1 1 0 0 0
C2 0 1 0 0
4 0 0 1/2 1/2
7 1/2 1/2 0 0

 =

(
I 0
S Q

)
is lim

n→∞
P̃n =

(
I 0

NS 0

)
=


C1 C2 4 7

C1 1 0 0 0
C2 0 1 0 0
4 1/2 1/2 0 0
7 1/2 1/2 0 0


with its fundamental matrix 2 N = (I − Q)−1 =

(
2 1
0 1

)
and NS =

(
1/2 1/2
1/2 1/2

)
. So to find lim

n→∞
Pn it

remains to find the limit transition matrices on the two irreducible closed sets.
For C1 = {1, 3, 6}, the eigenvalues of the transition matrix P1 are 1,−1/2,−1/2. The left eigenvector of

1 satisfies

π1 = π1P1 = π1

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 which gives π1 = c(1, 1, 1), c ∈ R

So 1 is a simple eigenvalue having a (left) eigenvector with nonnegative entries, and all other eigenvalues
have modulus less than 1. By the proposition in lecture (Theorem 1), π1 = (1/3, 1/3, 1/3) and lim

n→∞
Pn
1 =

(π1, π1, π1)
T.

For C2 = {2, 5}, the eigenvalues of the transition matrix P2 are 1,−1/6. The left eigenvector of 1 satisfies

π2 = π2P2 = π2

(
1/3 2/3
1/2 1/2

)
which gives π2 = c(3, 4), c ∈ R

So 1 is a simple eigenvalue having a (left) eigenvector with nonnegative entries, and all other eigenvalues
have modulus less than 1. By Theorem 1, π2 = (3/7, 4/7) and lim

n→∞
Pn
2 = (π2, π2)

T.

As mentioned in lecture, the bottom-left block of lim
n→∞

Pn
can is ((ρC1

(xi)π1), (ρC2
(xi)π2), . . .), so combined

this gives (while severely abusing notation)

lim
n→∞

Pn
can =

(
1⃗3 0

0 1⃗2

)
0

NS 0

(
π1 0
0 π2

)
0

0 0



=


(
1⃗3π1 0

0 1⃗2π2

)
0

NS

(
π1 0
0 π2

)
0

 =



— π1 —
— π1 —
— π1 —

0 0

0
— π2 —
— π2 —

0

— (1/2)π1 —
— (1/2)π1 —

— (1/2)π2 —
— (1/2)π2 —

0



=



1 3 6 2 5 4 7
1 1/3 1/3 1/3 0 0 0 0
3 1/3 1/3 1/3 0 0 0 0
6 1/3 1/3 1/3 0 0 0 0
2 0 0 0 3/7 4/7 0 0
5 0 0 0 3/7 4/7 0 0
4 1/6 1/6 1/6 3/14 2/7 0 0
7 1/6 1/6 1/6 3/14 2/7 0 0


2Here we only define fundamental matrix if every recurrent state is absorbing (absorbing chain); generalizations exist but

are beyond our scope.
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with 1⃗n being the column vector with n 1s. Permuting the states back3, we obtain

lim
n→∞

Pn =



1 2 3 4 5 6 7
1 1/3 0 1/3 0 0 1/3 0
2 0 3/7 0 0 4/7 0 0
3 1/3 0 1/3 0 0 1/3 0
4 1/6 3/14 1/6 0 2/7 1/6 0
5 0 3/7 0 0 4/7 0 0
6 1/3 0 1/3 0 0 1/3 0
7 1/6 3/14 1/6 0 2/7 1/6 0


Example from lecture note

Let us look at the transition matrix from lecture note p.22 (181/323):

P =



1 2 3 4 5 6
1 1/3 2/3 0 0 0 0
2 1/2 1/2 0 0 0 0
3 0 0 1 0 0 0
4 1/2 0 0 0 1/2 0
5 0 0 0 1/2 0 1/2
6 0 0 1/2 0 1/2 0


with transition diagram
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Note that P is already in canonical form

Pcan =



1 2 3 4 5 6
1 1/3 2/3 0 0 0 0
2 1/2 1/2 0 0 0 0
3 0 0 1 0 0 0
4 1/2 0 0 0 1/2 0
5 0 0 0 1/2 0 1/2
6 0 0 1/2 0 1/2 0

 =

P1 0 0
0 P2 0
S1 S2 Q



on which the corresponding transition matrix on the absorbing chain (which is a gambler’s ruin chain after
a renaming) is

P̃ =


{1, 2} {3} 4 5 6

{1, 2} 1 0 0 0 0
{3} 0 1 0 0 0

4 1/2 0 0 1/2 0
5 0 0 1/2 0 1/2
6 0 1/2 0 1/2 0

 =

(
I2 0
S Q

)

Again its fundamental matrix is N = (I −Q)−1 =

3/2 1 1/2
1 2 1
1/2 1 3/2

 and NS =

3/4 1/4
1/2 1/2
1/4 3/4


3It is necessary to permute the states back as by definition Pcan = CPC−1 for some permutation matrix C and so lim

n→∞
Pn
can =

C( lim
n→∞

Pn)C−1 differs from lim
n→∞

Pn by a similar transformation (unless P = Pcan is already in canonical form).
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The eigenvalues of the block transition matrices are 1,−1/6 and 1 respectively, which we can verify that
the condition of the proposition holds, and from solving the equations π = πP the stationary distributions
on the blocks are respectively

π1 = (3/7, 4/7)

π2 = (1)

Hence (again abusing notation)

lim
n→∞

Pn = lim
n→∞

Pn
can =

(
1⃗2 0

0 1⃗1

)
0

NS 0

(
π1 0
0 π2

)
0

0 0

 =



1 2 3 4 5 6
1 3/7 4/7 0 0 0 0
2 3/7 4/7 0 0 0 0
3 0 0 1 0 0 0
4 9/28 3/7 1/4 0 0 0
5 3/14 2/7 1/2 0 0 0
6 3/28 3/7 3/4 0 0 0


Extra: Some trick

Applying of Perron–Frobenius theorem on (right) stochastic matrices, we obtain

Theorem 2. Let P be the transition matrix of some finite Markov chain. Suppose for some n ≥ 1, all
entries of Pn are positive, then the conditions to Theorem 1 are satisfied.

Such transition matrix is said to be primitive, and the corresponding chain regular.
Note that if Pn only has positive entries, then so is Pn+1 (try to prove it!). So to show that Theorem 1

holds on the transition matrix P of some irreducible Markov chain, we can

� Compute all eigenvalues of P , then find all solutions of π = πP (which is more or less inevitable); or

� Keep raising powers and see if some Pn has only positive entries4

For example, for P1 =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 from the first example, all entries of P 2
1 =

1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2


are positive, so the proposition holds on P1. This is sometimes (a bit) faster than computing moduli of all
eigenvalues of P1.

Extra: Proof of limit transition matrix

It appears that the lecture note did not give how the limit of the transition matrix (in canonical form) is
obtained. It suffices to consider the bottom-left part.

Theorem 3. Suppose C ⊆ S is a finite irreducible closed set on which the limit transition matrix takes the
form lim

n→∞
Pn
C = (π, π, . . . , π)T with π being the (unique) stationary distribution on C. Then for all x ∈ ST

and y ∈ C, lim
n→∞

Pn(x, y) = ρC(x)πy

Proof. Let T = min { k ≥ 1 | Xk ∈ C }. Then for n ≥ 1, as C is finite and irreducible,

Pn(x, y) = Px(Xn = y) =

n∑
i=1

∑
z∈C

Px(Xn = y, T = i, Xi = z)

=
∑
z∈C

n∑
i=1

Px(T = i, Xi = z)Pn−i(z, y)

=
∑
z∈C

∞∑
i=1

Px(T = i, Xi = z)Pn−i(z, y)χi≤n

4If the chain has N states, it suffices to look at n ≥ (N − 1)2 + 1 (try to prove it!).
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Noting that Pn−i(z, y)χi≤n
n→∞−−−−→ πy and Px(T = i, Xi = z)Pn−i(z, y)χi≤n ≤ Px(T = i) with which∑∞

i=1 Px(T = i) = ρC(x) < ∞ as C is closed, by dominated convergence theorem we have

lim
n→∞

Pn(x, y) =
∑
z∈C

∞∑
i=1

Px(T = i, Xi = z) lim
n→∞

Pn−i(z, y)χi≤n

=
∑
z∈C

∞∑
i=1

Px(T = i, Xi = z)πy

= πy

∞∑
i=1

∑
z∈C

Px(T = i, Xi = z)

= πyρC(x)
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