MATH4240 Tutorial 5

2024-02-19

Example for previous topic

This is an example that was supposed to be in the last tutorial session (that I forgot to include in).
Recall that we can decompose the state space of a (finite) Markov chain into irreducible closed sets C_{1}, C_{2}, \ldots and transient part \mathscr{S}_{T}, which gives us a transition matrix of the block form

$$
P=\begin{array}{r}
\\
\begin{array}{r}
C_{1} \\
C_{2} \\
\vdots \\
C_{k} \\
\mathscr{S}_{T}
\end{array}\left[\begin{array}{ccccc}
C_{1} & C_{2} & \ldots & C_{k} & \mathscr{S}_{T} \\
P_{1} & 0 & \ldots & 0 & 0 \\
0 & P_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & P_{k} & 0 \\
Q_{1} & Q_{2} & \ldots & Q_{k} & Q
\end{array}\right]
\end{array}
$$

From last tutorial we know that $I-Q$ is invertible, and $Q^{n} \xrightarrow{n \rightarrow \infty} 0$.
Consider a Markov chain with transition matrix

$$
P=\begin{array}{r}
\\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7
\end{array}\left[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 0 & 1 / 2 & 0 & 0 & 1 / 2 & 0 \\
0 & 1 / 3 & 0 & 0 & 2 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 1 / 2 & 0 & 0 & 1 / 2 \\
0 & 1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 & 0 & 0 \\
1 / 3 & 1 / 4 & 1 / 6 & 0 & 1 / 4 & 0 & 0
\end{array}\right]
$$

from which we can draw the transition diagram

We can see that $C_{1}=\{1,3,6\}, C_{2}=\{2,5\}$ are irreducible closed, and $\mathscr{S}_{T}=\{4,7\}$.
We can write the transition matrix as

$$
P=\begin{gathered}
\\
1 \\
3 \\
3 \\
6 \\
2
\end{gathered}\left[\begin{array}{ccc|cc|cc}
1 & 3 & 6 & 2 & 5 & 4 & 7 \\
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 & 0 & 0 & 0 \\
5 \\
4 & 0 & 0 & 1 / 3 & 2 / 3 & 0 & 0 \\
7 & 0 & 0 & 1 / 2 & 1 / 2 & 0 & 0 \\
7 & 0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
1 / 3 & 1 / 6 & 0 & 1 / 4 & 1 / 4 & 0 & 0
\end{array}\right]
$$

and further write it as

$$
\tilde{P}=\begin{gathered}
C_{1} \\
C_{2} \\
C_{2} \\
4 \\
7
\end{gathered}\left[\begin{array}{cccc}
C_{2} & 4 & 7 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 1 / 2 \\
0
\end{array}\right]=\left[\begin{array}{ll}
I_{2} & \mathbf{0} \\
S & Q
\end{array}\right]
$$

with $S=\left(\begin{array}{cc}0 & 0 \\ 1 / 2 & 1 / 2\end{array}\right), Q=\left(\begin{array}{cc}1 / 2 & 1 / 2 \\ 0 & 0\end{array}\right)$ as $\tilde{P}\left(7, C_{1}\right)=\sum_{x \in C_{1}} P(7, x)=\frac{1}{3}+\frac{1}{6}=\frac{1}{2}$ and similarly $\tilde{P}\left(7, C_{2}\right)=$ $\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$. This effectively contracts the original chain to a chain on states $C_{1}, C_{2}, 4,7$ where every recurrent state is absorbing (and thus is an absorbing chain):

By one-step argument,

$$
\begin{aligned}
& \rho_{4, C_{1}}=\rho_{C_{1}}(4)=\tilde{P}(4,4) \rho_{C_{1}}(4)+\tilde{P}(4,7) \rho_{C_{1}}(7) \\
& \rho_{7, C_{1}}=\rho_{C_{1}}(7)=\tilde{P}\left(7, C_{1}\right) \\
& \rho_{4, C_{2}}=\rho_{C_{2}}(4)=\tilde{P}(4,4) \rho_{C_{2}}(4)+\tilde{P}(4,7) \rho_{C_{2}}(7) \\
& \rho_{7, C_{2}}=\rho_{C_{2}}(7)=\tilde{P}\left(7, C_{2}\right)
\end{aligned}
$$

While this system can be easily solved ${ }^{1}$, let us rewrite it in the following form

$$
\begin{aligned}
\left(\begin{array}{ll}
\rho_{C_{1}}(4) & \rho_{C_{2}}(4) \\
\rho_{C_{1}}(7) & \rho_{C_{2}}(7)
\end{array}\right) & =\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
\rho_{C_{1}}(4) & \rho_{C_{2}}(4) \\
\rho_{C_{1}}(7) & \rho_{C_{2}}(7)
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
1 / 2 & 1 / 2
\end{array}\right) \\
\text { or } A & =Q A+S
\end{aligned}
$$

with $A=\left(\begin{array}{ll}\rho_{C_{1}}(4) & \rho_{C_{2}}(4) \\ \rho_{C_{1}}(7) & \rho_{C_{2}}(7)\end{array}\right)$. As $I-Q$ is invertible with inverse $N=(I-Q)^{-1}$, this means that

$$
A=N S=\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
0 & 1
\end{array}\right)^{-1}\left(\begin{array}{cc}
0 & 0 \\
1 / 2 & 1 / 2
\end{array}\right)=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

Also, from the previous tutorial

$$
\lim _{n \rightarrow \infty} \tilde{P}^{n}=\left[\begin{array}{cc}
I & 0 \\
N S & 0
\end{array}\right]=\begin{gathered}
C_{1} \\
C_{2} \\
4 \\
7
\end{gathered}\left[\begin{array}{cccc}
C_{1} & C_{2} & 4 & 7 \\
0 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0
\end{array}\right]
$$

so A is the bottom-left block of $\lim _{n \rightarrow \infty} \tilde{P}^{n}$. Note also that $N_{i j}=(I-Q)_{i j}^{-1}=\sum_{k=0}^{\infty} Q_{i j}^{k}=\sum_{k=0}^{\infty} P^{k}(i, j)=$ $E_{i}(N(j))$ (with appropriate indexing; see also the previous tutorial)

[^0]
Birth and death chain

Recall that for an irreducible birth and death chain on nonnegative integers \mathbb{N} with $p_{x}=P(x, x+1)$ and $q_{x}=P(x, x-1)$, various properties depend on $\gamma_{y}=\prod_{x=1}^{y} q_{x} / p_{x}\left(\right.$ with $\left.\gamma_{0}=1\right)$:

- $P_{x}\left(T_{a}<T_{b}\right)=\left(\sum_{y=x}^{b-1} \gamma_{y}\right) /\left(\sum_{y=a}^{b-1} \gamma_{y}\right)$ for $a<x<b$
- $P_{x}\left(T_{a}>T_{b}\right)=\left(\sum_{y=a}^{x-1} \gamma_{y}\right) /\left(\sum_{y=a}^{b-1} \gamma_{y}\right)$ for $a<x<b$
- (HW3 Q26; also Q28) if $\sum_{y=0}^{\infty} \gamma_{y}=\infty$, then $\rho_{x 0}=1$ for all $x \geq 1$, and the chain is recurrent; otherwise $\rho_{x 0}=\left(\sum_{y=x}^{\infty} \gamma_{y}\right) /\left(\sum_{y=0}^{\infty} \gamma_{y}\right)$ on $x \geq 1$, and the chain is transient

As an application of these properties, let us go through Q30 in HW3.

HW3 Q30

Consider a birth and death chain on nonnegative integers with $p_{x}=\frac{x+2}{2(x+1)}$ and $q_{x}=\frac{x}{2(x-1)}$ on $x \geq 0$. We want to compute

- $P_{x}\left(T_{a}<T_{b}\right)$ for $a<x<b$
- $\rho_{x 0}$ for $x>0$

By definition, $\frac{q_{x}}{p_{x}}=\frac{x}{x+2}$ on $x \geq 1$, so on $y \geq 1$

$$
\gamma_{y}=\prod_{x=1}^{y} \frac{q_{x}}{p_{x}}=\frac{1}{3} \frac{2}{4} \ldots \frac{x-1}{x+1} \frac{x}{x+2}=\frac{2}{(x+1)(x+2)}=\frac{2}{x+1}-\frac{2}{x+2}
$$

so on $c<d$

$$
\sum_{y=c}^{d-1} \gamma_{y}=\frac{2}{c+1}-\frac{2}{d+1}
$$

and

$$
\sum_{y=0}^{\infty} \gamma_{y}=2<\infty
$$

which implies the chain is transient and
\bullet

$$
P_{x}\left(T_{a}<T_{b}\right)=\left(\sum_{y=x}^{b-1} \gamma_{y}\right) /\left(\sum_{y=a}^{b-1} \gamma_{y}\right)=\left(\frac{2}{x+1}-\frac{2}{b-1}\right) /\left(\frac{2}{a+1}-\frac{2}{b+1}\right)=\frac{(b-x)(a+1)}{(b-a)(x+1)}
$$

-

$$
\rho_{x 0}=\left(\sum_{y=x}^{\infty} \gamma_{y}\right) /\left(\sum_{y=0}^{\infty} \gamma_{y}\right)=\frac{2}{x+1} / 2=\frac{1}{x+1}
$$

Branching chain

Recall that in a branching chain, its behavior can be studied with the generating function ${ }^{2} \Phi(t)=\sum_{k=0}^{\infty} p_{k} t^{k}$ of the distribution of the offspring produced by each individual:

- The expected number of offspring of an individual in one generation is $\mu=E_{1}\left(X_{1}\right)=\Phi^{\prime}(1)$

[^1]- (HW3 Q35) $E_{x}\left(X_{n}\right)=x \mu^{n}$
- $P(1,0)=\Phi(0)$
- The extinction probability $\rho=\rho_{10} \in[0,1]$ with $\rho_{x 0}=\rho^{x}$ is the limit of the recurrence x_{n} with $x_{0}=0$ and $x_{n+1}=\Phi\left(x_{n}\right)$, and thus satisfies $\rho=\Phi(\rho)$, which except in the degenerate case $p_{1}=1$ and depending on μ there are at most 2 solutions in $[0,1]$, one of which is $t=1$
As an example, let us go through HW3 Q33.

HW3 Q33

Consider a branching chain with $f(0)=f(3)=1 / 2$. We want to compute the extinction probability ρ.
The generating function is $\Phi(t)=f(0)+f(3) t^{3}=\left(1+t^{3}\right) / 2$ with $\mu=\Phi^{\prime}(1)=\frac{3}{2}>1$. This means that $\Phi(t)=t$ has more than 1 solutions and ρ is the smaller one in $[0,1)$. Knowing that $t=1$ is always a solution, the equation can be easily solved as

$$
0=t^{3}-2 t+1=(t-1)\left(t^{2}+t-1\right)=(t-1)\left(t-\frac{-1+\sqrt{5}}{2}\right)\left(t-\frac{-1-\sqrt{5}}{2}\right)
$$

and so $\rho=\frac{-1+\sqrt{5}}{2} \in(0,1)$.

Queuing chain

Similar to branching chain, its property depends on the distribution f of arrivals

- (HW3 Q37) a queuing chain is irreducible iff $f(0)>0$ and $f(0)+f(1)<1$
- the recurrence probability $\rho=\rho_{00}$ for an irreducible chain solves $\rho=\Phi(\rho)$ with $\Phi(t)=\sum f(k) t^{k}$ being the generating function of the arrival distribution
- $\rho_{x 0}=\rho^{x}$ on $x \geq 1$
- If irreducible, then the chain is recurrent iff $\mu=E_{0}\left(X_{1}\right)=\Phi^{\prime}(1) \leq 1$

We will show the irreducible condition of queuing chain in HW3 Q37.

HW3 Q37

Suppose the arrival distribution f satisfies $f(0)>0$ and $f(0)+f(1)<1$. Then for some $k \geq 2, f(k)>0$. So

- $\rho_{00} \geq P(0,0)=f(0)>0$
- for $x>y \geq 0, \rho_{x y} \geq P(x, x-1) P(x-1, x-2) \ldots P(y+1, y)=f(0)^{x-y}>0$
- for $x>0$, with $n>\frac{x-1}{k-1}$ sufficiently large such that $k+(n-1)(k-1)>x$,

$$
\begin{aligned}
\rho_{0 x} & \geq \rho_{0, k+(n-1)(k-1)} \rho_{k+(n-1)(k-1), x} \\
& \geq P(0, k) P(k, k+(k-1)) \ldots P(k+(n-2)(k-1), k+(n-1)(k-1)) \rho_{k+(n-1)(k-1), x} \\
& =f(k)^{n} \rho_{k+(n-1)(k-1), x} \\
& >0
\end{aligned}
$$

so for all $x \geq 0, x$ leads to 0 and 0 leads to x. This implies that x leads to y for all $x, y \geq 0$, and thus the chain is irreducible.

Suppose now that $f(0)=0$ or $f(0)+f(1)=1$.

- If $f(0)=0$, then for all $x>0, P(x, x-1)=0$. By the structure of the chain, this implies that the chain random variables X_{n} must be non-decreasing $X_{n+1} \geq X_{n}$, and so $\rho_{x 0}=0$ for $x>y$.
- If $f(0)+f(1)=1$, then for all $y>x>0, P(x, y)=f(y-x+1)=0$. By the structure of the chain, this implies that $\rho_{x y}=0$ for all $y>x>1$.
In both cases, the chain is reducible.

[^0]: ${ }^{1}$ See also HW3 Q20(b)

[^1]: ${ }^{2}$ Technically speaking this differs from the (usual) moment generating function of the probability distribution by a change of variable.

