MATH4240 Tutorial 5

2024-02-19

Example for previous topic

This is an example that was supposed to be in the last tutorial session (that I forgot to include in).
Recall that we can decompose the state space of a (finite) Markov chain into irreducible closed sets

C1,C5, ... and transient part .7, which gives us a transition matrix of the block form
c, Oy ... Cy I7r
Ci[Pp 0 ... 0 0
Col0 P, ... 0 0
P= i 1o
CylO0O 0 ... P O
S Q1 Q2 ... Qr Q

n—oo

From last tutorial we know that I — @ is invertible, and Q" —— 0.
Consider a Markov chain with transition matrix

1 2 3 4 5 6 7
1Ifo o0 1/2 0 0 1/2 0]
200 1/3 0 0 2/3 0 0
312 0 0 0 0 1/2 0

P=4{0 0 0 1/2 0 0 1/2
500 1/2 0 0 1/2 0 0
6{1/2 0 1/2 0 0 0 0
711/3 1/4 16 0 1/4 0 0 |

from which we can draw the transition diagram

We can see that C, = {1, 3,6}, Cy = {2,5} are irreducible closed, and .77 = {4, 7}.
We can write the transition matrix as

1 3 6 2 5 4 7

1Ifo 1/2 1210 00 0]
312 0 1200 0] 0 0
6{1/2 12 0|0 0] 0 0
p=2{0 0 o0 [1/3 2/3] 0 0
5{0 o o0 |1/2 1/2] 0 0
aTo 0 00 o0 |12 1/2
7[1/3 1/6 0 |1/4 1/4| 0 0 |




and further write it as

c, C, 4 7

ci[1 0 0 0
]3_02 0 1 0 0 {12 0}
T 4]0 0 1/2 1/2 S Q

7172 172 0 o0

with S = (132 192), Q= (1(/)2 162) as P(T,C1) = e, P(T,) = 141 = L and similarly (7, Cp) =

i + i = % This effectively contracts the original chain to a chain on states C1, Cs, 4,7 where every recurrent
state is absorbing (and thus is an absorbing chain):

1/2

1/2

Ao (D

By one-step argument,

pa.c, = po,(4) = P(4,4)pc, (4) + P(4,7)pc, (7)
pr.c, = Pcl(
P1,Cy = PCs(
p1.0y = pcy (T) = P(7,C3)

While this system can be easily solved!, let us rewrite it in the following form
PCy (7) PC, (7) 0 0 Pcy (7) PC, (7) 1/2 1/2
or A=QA+S

. pc,(4)  pe (4)) .. . o -1 .
ith A = ! 2 . As I — @ is invertible with inverse N = (I — , this means that
with 4= (1) ot Q o invertible with inv -9

A=NS= (1(/)2 _11/2> h (1?2 1(/)2> - Gg }ﬁ)

Also, from the previous tutorial

C, Cy 47

.1 0 00

hmpn{l 0]02 0 1 00
300 NS 0 41/2 1/2 0 0
7112 1/2 0 0

so A is the bottom-left block of lim P"™. Note also that N;; = (I — Q);l = Y0 Q= Yonto PH(i,j) =

n— oo

E;(N(j)) (with appropriate indexing; see also the previous tutorial)

1See also HW3 Q20(b)



Birth and death chain

Recall that for an irreducible birth and death chain on nonnegative integers N with p, = P(z,z + 1) and
¢y = P(z,z — 1), various properties depend on v, = [[/_; ¢u/ps (with o = 1):

o Po(T, <Ty) = (X0 7,)/(X0 L y,) fora <o < b

o Po(Tu>Ty) = (X0 o)/ (Cay ) fora<a<b

e (HW3 Q26; also Q28) if Zzo:o Yy = 00, then p,o = 1 for all x > 1, and the chain is recurrent; otherwise
P0 = (g V) /(=0 Vy) on > 1, and the chain is transient

As an application of these properties, let us go through Q30 in HW3.

HW3 Q30

Consider a birth and death chain on nonnegative integers with p, = m and ¢, = ﬁ onx > 0. We
want to compute

e P.(T,<Ty) fora<xz<b

® pyo forx >0

By definition, q’:ﬁ_zonle, soony>1
quf,, z—1 x 2 2 7 2
T = 4" z+1x+2 (z+D)(z+2) o+l z+2
soonc<d

2
Z%’ c+1 Td+1

and
o0
Z%f =2< 00
y=0

which implies the chain is transient and

2 2 2 (b—2x)(a+1)
P(T, <Tp) = <Z%) (Z%>:<x+1 b—1>/<a+1_b+1>:(b—a)(ff+1)

- 1
p;c():<yZ;ErYy> (Z%’)_;v-ylﬂ:x—i—l

Branching chain

Recall that in a branching chain, its behavior can be studied with the generating function? ®(t) = Yorco pith
of the distribution of the offspring produced by each individual:

e The expected number of offspring of an individual in one generation is p = F1(X;) = ®'(1)

2Technically speaking this differs from the (usual) moment generating function of the probability distribution by a change
of variable.



e (HW3 Q35) E.(X,) = zu™
e P(1,0) = ®(0)

e The extinction probability p = p1g € [0, 1] with po = p® is the limit of the recurrence x,, with o =0
and z,41 = ®(z,), and thus satisfies p = ®(p), which except in the degenerate case p; = 1 and
depending on p there are at most 2 solutions in [0, 1], one of which is ¢t =1

As an example, let us go through HW3 Q33.

HW3 Q33

Consider a branching chain with f(0) = f(3) = 1/2. We want to compute the extinction probability p.

The generating function is ®(t) = f(0) + f(3)t> = (1 +¢3)/2 with 4 = ®'(1) = 2 > 1. This means that
®(t) = ¢ has more than 1 solutions and p is the smaller one in [0,1). Knowing that ¢t = 1 is always a solution,
the equation can be easily solved as

-1+5 -1-5
g - ——5—)

0=t —24+1=0t-1D*+t—1)=(t—1)(t—

Queuing chain
Similar to branching chain, its property depends on the distribution f of arrivals
e (HW3 Q37) a queuing chain is irreducible iff f(0) > 0 and f(0) + f(1) < 1

e the recurrence probability p = pgo for an irreducible chain solves p = ®(p) with ®(¢) = > f(k)t* being
the generating function of the arrival distribution

e poo=ponx>1
e If irreducible, then the chain is recurrent iff © = Ey(X;) = ®’'(1) <1
We will show the irreducible condition of queuing chain in HW3 Q37.

HW3 Q37

Suppose the arrival distribution f satisfies f(0) > 0 and f(0)+ f(1) < 1. Then for some k > 2, f(k) > 0. So
® poo = P(0,0) = f(0) >0
o forz >y >0, pyy > Plr,z—1)Plx—1,2—2)...Ply+1,y) = f(0)* ¥ >0

o for x > 0, with n > =1 sufficiently large such that k + (n — 1)(k — 1) > =,

POz = PO, k+(n—1)(k=1)Pk+(n—1)(k—1),z
> PO, k)P(k, k+ (k= 1)) ... P(k+ (n— 2)(k — 1),k + (n — 1)(k = 1)) pr(n_1)(h-1).0
= f(k)nPkJr(n—l)(kq),z
>0

so for all x > 0, x leads to 0 and 0 leads to x. This implies that x leads to y for all z,y > 0, and thus the

chain is irreducible.
Suppose now that f(0) =0 or f(0)+ f(1) = 1.

e If f(0) = 0, then for all z > 0, P(z,z — 1) = 0. By the structure of the chain, this implies that the
chain random variables X,, must be non-decreasing X, 11 > X, and so p,o = 0 for x > y.

o If f(0)+ f(1) =1, then for all y > > 0, P(z,y) = f(y — z + 1) = 0. By the structure of the chain,
this implies that p,, = 0 for all y > z > 1.

In both cases, the chain is reducible.



