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Random walk

Consider yourself walking on a d-dimensional grid Zd starting at the origin, and at each junction you pick a
direction along the grid uniformly random and walk one step forward in that direction. Can you return to
where you start?

Let Xn denote the location after n steps. It is easy to see that Xn+1 = Xn + ξn where ξ1, . . . is iid
random variables distributed uniformly random on all directions with P (ξn = ei) = P (ξn = −ei) =

1
2d for

all n, i. In particular, {Xn} is a Markov chain.

1D random walk, with one-step argument

For d = 1, the transition function is P (x, x− 1) = P (x, x+ 1) = 1
2 for each x ∈ Z.

One-step argument on the recurrent probability ρx0 gives

ρx0 = P (x, x− 1)ρx−1,0 + P (x, x+ 1)ρx+1,0

=
1

2
ρx−1,0 +

1

2
ρx+1,0, x ∈ Z \ {1,−1}

ρ10 = P (1, 0) + P (1, 2)ρ20 =
1

2
+

1

2
ρ20

ρ−1,0 = P (−1, 0) + P (−1,−2)ρ−2,0 =
1

2
+

1

2
ρ−2,0

Rearranging the first equation gives

ρx+1,0 − ρx0 = ρx0 − ρx−1,0, x /∈ {1,−1}
so ρx0 = ρ10 + (x− 1)(ρ20 − ρ10), x ≥ 1

ρx0 = ρ−1,0 − (x+ 1)(ρ−2,0 − ρ−1,0), x ≤ −1

Since ρx0 ∈ [0, 1] for all x, we must have ρ20 − ρ10 = ρ−2,0 − ρ−1,0 = 0 and so ρx0 = ρ10 for x ≥ 1 and
ρx0 = ρ−1,0 for x ≤ −1. Rearranging the equations for ρ10, ρ−1,0 gives

ρ10 − ρ20 = 1− ρ10

so ρ10 = 1

ρ−1,0 − ρ−2,0 = 1− ρ−1,0

so ρ−1,0 = 1

Using the equation for ρ00 then implies

ρ00 =
1

2
ρ−1,0 +

1

2
ρ10 = 1

In particular, 0 is a recurrent state. As the chain is irreducible, every state is recurrent, and ρxy = 1 for all
x, y.

Unfortunately, this approach is not really well-suited for higher dimension cases as the recurrence relation
becomes messy to handle.
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1D random walk, with Stirling

Alternatively, we can consider the expected number of visits E0(N(0)), which is infinite iff 0 is a recurrent
state.

You can only return to the origin if you take even steps and takes the same amount of left steps and
right steps. Hence

Pn(0, 0) =

{
0 if n = 2k + 1, k ∈ N(
2k
k

)
P (left)

k
P (right)

k
if n = 2k, k ∈ N

=

{
0 if n = 2k + 1, k ∈ N
2−2k (2k)!

(k!)2 if n = 2k, k ∈ N

And so the expected number of visits E0(N(0)) =
∑∞

n=1 P
n(0, 0) =

∑∞
k=1 P

2k(0, 0) =
∑∞

k=1 2
−2k (2k)!

(k!)2 .

Using Stirling’s approximation

n! ≈ C(n/e)n
√
n for some constant C > 0

we have

2−2k (2k)!

(k!)2
≈ 2−2kC(2k/e)2k

√
2k

(C(k/e)k
√
k)2

= C−1
√
2k−1/2

which implies that E0(T0) =
∑∞

n=1 2
−2k (2k)!

(k!)2 ≈ C−1
√
2
∑∞

k=1 k
−1/2 = ∞. This implies that 0 is a recurrent

state, and so ρ00 = 1.

Higher dimensional random walk, with Stirling

For d = 2, similar to d = 1 we can only return to the origin with even steps, and furthermore we must have k
steps east, k steps west, n−k steps north, n−k steps south among these 2n steps for some k ∈ {0, 1, . . . , n}.
So counting paths gives

P 2k(0, 0) = (1/4)2k
n∑

k=0

(2n)!

k!k!(n− k)!(n− k)!

= 2−4k

(
2n

n

) n∑
k=0

(
n

k

)2

= 2−4k

(
2n

n

)2

≈ 2C−1k−1

So E0(N(0)) =
∑∞

n=1 P
n(0, 0) ≈ 2C−1

∑∞
k=1 k

−1 = ∞, which implies that 0 is recurrent.
Alternatively, we can also consider the component random variables Xn = (Xn,1, Xn,2) with respective

steps ξn = (ξn,1, ξn,2). However, ξ1,n, ξ2,n as random variables on {−1, 0, 1} are dependent (when ξn,1 ̸= 0,
we must have ξn,2 = 0), so it will be more convenient to work on

Yn,1 = Xn,1 +Xn,2, Yn,2 = Xn,1 −Xn,2

Their increments ζn,i = Yn+1,i − Yn,i are then random variables on {−1, 1}, and ζn,1, ζn,2 are independent
(try to prove it!). This means that {Yn,1}, {Yn,2} are two independent 1D random walk. This gives the same
result as counting, and also explains why Pn

d=2(0, 0) = (Pn
d=1(0, 0))

2.
Similarly, for d = 3, P 2n+1(0, 0) = 0 and

P 2n(0, 0) = (
1

2 · 3
)2n

∑
i+j≤n

(2n)!

(i!j!(n− i− j)!)2

= (1/6)2n
(
2n

n

) ∑
i+j+k=n

(
n!

i!j!k!
)2

Note that if i > j + 1, then

(i− 1)!(j + 1)!k! = i!j!k!
j + 1

i
< i!j!k!
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with | (i− 1)− (j + 1) | = i− j − 2 < i− j = | i− j |. This means that i!j!k! is minimized when the indices
are closet, which gives i!j!k! ≥ (⌊ n/3 ⌋!)3 and so

P 2n(0, 0) ≤ (1/2)2n
(
2n

n

)
n!

(⌊ n/3 ⌋!)3
3−n

∑
i+j+k=n

3−n n!

i!j!k!

= (1/2)2n
(
2n

n

)
n!

(⌊ n/3 ⌋!)3
3−n(3−1 + 3−1 + 3−1)n

≈ C ′n−3/2

This implies that
∞∑

n=1

P 2n(0, 0) ⪅ C ′
∞∑

n=1

n−3/2 < ∞

So 0 is a transient state.
With the same approach one can show that on Zd,

P 2n(0, 0) ≈ Cdn
−d/2

and so the chain is transient on d ≥ 3.

Extra: Fourier approach

We can consider a more general walk. Assume that P (x, x + k) = p(k) for each x, k, and consider pn(k) =
Pn(0, k). By one-step argument and symmetry,

p1(k) = p(k)

pn+1(k) = Pn+1(0, k) =
∑
x∈Z

P (0, x)Pn(x, k) =
∑
x∈Z

p(x)pn(k − x)

In particular, if p̂k(θ) =
∑

x∈Z pk(x)e
−ixθ and p̂(θ) =

∑
x∈Z p(x)e

−ixθ are the Fourier transform, then

p̂1(θ) =
∑
x∈Z

p1(x)e
−ixθ =

∑
x∈Z

p(x)e−ixθ = p̂(θ)

p̂n+1(θ) =
∑
x∈Z

pn+1(x)e
−ixθ =

∑
x∈Z

∑
y∈Z

(p(y)e−iyθ)(pn(x− y)e−i(x−y)θ) = p̂(θ)p̂n(θ)

and so p̂n(θ) = p̂(θ)n

By the property of Fourier transform, Pn(0, k) = pn(k) = (2π)−1
∫ π

−π
p̂n(θ)e

ikθ dθ = (2π)−1
∫ π

−π
p̂(θ)neikθ dθ.

In particular,

Pn(0, 0) = (2π)−1

∫ π

−π

p̂(θ)n dθ

In the case P (x, x− 1) = P (x, x+ 1) = 1
2 , p̂(θ) =

1
2e

−iθ + 1
2e

iθ = cos θ, and you can show that P 2n(0, 0) ≥
C1n

−1/2 on n sufficiently large by cutting off the peaks and e.g. Laplace method.
This approach is able to handle high dimensional cases and even more general random walk where the

step is not a discrete random variable (e.g. Gaussian distributed step), but estimating the integral (usually)
becomes complicated and often requires advanced knowledge in Fourier analysis.

Within the scope of this course, there is no need to use such approach.

Transient part of transition matrix

Consider a (finite) Markov chain on the state space S . We know that S decomposes as

S = C1 ∪ C2 ∪ . . . ∪ Ck ∪ ST
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where each Ci is irreducible closed and ST is the set of transient states. The transition matrix in this
decomposition is then (see lecture notes)

P =



C1 C2 . . . Ck ST

C1 P1 0 . . . 0 0
C2 0 P2 . . . 0 0
...

...
...

. . .
...

...
Ck 0 0 . . . Pk 0
ST Q1 Q2 . . . Qk Q


where Q is the part of the transition matrix that transfer states insider ST .

Take two transient states x, y ∈ ST . Then

P 2(x, y) =
∑
z∈S

P (x, z)P (z, y)

Noting that P (z, y) = 0 if z ∈
⋃
Ci = S \ ST , we can simplify the relation as

P 2(x, y) =
∑

z∈ST

P (x, z)P (z, y) = Q(x, z)Q(y, z) = Q2(x, y)

Induction gives you Pn(x, y) = Qn(x, y).
Since x is transient, the expected number of visits Ex(N(y)) =

∑∞
n=1 P

n(x, y) =
ρxy

1−ρyy
is finite. This

implies that Qn(x, y) = Pn(x, y)
n→∞−−−−→ 0.

If Q has an eigenvalue λ with modulus | λ | ≥ 1, then with a corresponding unit eigenvector v we have

λnv = Qnv
n→∞−−−−→ 0, from which contradiction arises.

This implies that every eigenvalue of Q must have modulus less than 1 (see lecture note).

Limit transition matrix on chains with only absorbing recurrent states

Consider a (finite) Markov chain where every recurrent states is an absorbing state. In this case the transition
matrix is

P =

[absorbing ST

absorbing I 0
ST S Q

]
We already know that Qn n→∞−−−−→ 0, so what is Pn?

By direct computation,

P 2 =

[
I 0
S Q

] [
I 0
S Q

]
=

[
I 0

S +QS Q2

]
P 3 = PP 2 =

[
I 0

S +QS +Q2S Q3

]
by induction Pn =

[
I 0

(
∑n

k=0 Q
k)S Qn

]
so passing the limit gives

lim
n→∞

Pn =

[
I 0

(
∑∞

k=0 Q
k)S 0

]
=

[
I 0

(I −Q)
−1

S 0

]
where I −Q is invertible as all eigenvalues of Q have moduli less than 1.
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