MATH4240 Tutorial 1

2024-01-15

This is a quick review on the probability theory. For the sake of brevity, some arguments presented here are only formal with details omitted. For a proper introduction on probability, consult the reference textbooks listed on the course webpage, courses like MATH3280, MATH4050 and MATH5011, or the Department of Statistics.

1 Basic concepts

A probability space (Ω, \mathcal{F}, P) consists of

- sample space Ω , a nonempty set of all possible outcomes
- event space \mathcal{F} , a σ -algebra on Ω which contains events (subsets of Ω) that we would work on
- probability measure $P: \mathcal{F} \to [0, 1]$, an assignment of probability (size) to events in \mathcal{F}

A random variable is a measurable function $X : \Omega \to A \subseteq \mathbb{R}$ that quantifies the outcomes. Shorthand notations like $\{X \in B\} = \{\omega \in \Omega \mid X(\omega) \in B\}$ and $\{X = a\} = \{\omega \in \Omega \mid X(\omega) = a\}$ are commonly used.

1.1 Conditional and independence

Consider two events $A, B \subseteq \Omega$. If $P(B) \neq 0$, the conditional probability of A given B is $P(A|B) = \frac{P(A \cap B)}{P(B)}$. A, B are independent if $P(A \cap B) = P(A)P(B)$, or P(A|B) = P(A) assuming $P(B) \neq 0$.

If X, Y are two random variables on the same probability space, then X, Y are independent if for all (Borel) sets $A, B \subseteq \mathbb{R}$ the events $\{X \in A\}$ and $\{Y \in B\}$ are independent, that is $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$.

Theorem 1.1 (law of total probability). If B_1, B_2, \ldots are disjoint and $\Omega = \bigcup B_i$, then $P(A) = \sum P(A \cap B_i)$

2 Distribution functions

For a random variable X, its cumulative distribution function (CDF) is $F_X(x) = P(X \le x)$.

If the range of X is countable, X is a *discrete* random variable, and its *probability mass function (PMF)* is $p_X(x) = P(X = x)$. Commonly the range of a discrete random variable is a subset of integers.

Exercise 2.1. Show that for a discrete random variable X and its range $A = X(\Omega), 0 \le p_X(x) \le 1$ for all $x \in A$, and $\sum_{x \in A} p_X(x) = 1$

If there exists a function f_X such that $P(a \leq X \leq b) = \int_a^b f_X(x) dx$ for all $a, b \in \mathbb{R}$ with $a \leq b$, then X is a *continuous* random variable, and f_X is its *probability density function (PDF)*. Under some simple conditions, $\frac{d}{dx}F_X = f_X$, and $P(X \in A) = \int_A f_X$.

Exercise 2.2. Show that for a continuous random variable X with continuous pdf f_X , $f_X \ge 0$ on \mathbb{R} , and $\int_{-\infty}^{\infty} f_X(x) dx = 1$

In this course, we will (usually) assume a random variable is either discrete or continuous.

2.1 Examples

Some classic examples of discrete distributions are

- binomial distribution $X \sim B(n,p)$ with $n \in \mathbb{N}$, $p \in [0,1]$ has pmf $p_X(k) = \binom{n}{k} p^k (1-p)^p$ for $k \in \{0,\ldots,n\}$. On n = 1, B(1,p) is also called *Bernoulli distribution*
- Poisson distribution $X \sim \text{Poisson}(\lambda)$ with $\lambda > 0$ has pmf $p_X(k) = \frac{\lambda^k}{k!} e^{-\lambda}$ for $k \in \mathbb{N}$
- geometric distribution $X \sim \text{Geom}(p)$ with $p \in [0,1]$ has pmf $p_X(k) = (1-p)^{k-1}p$ for $k \in \mathbb{Z}^+$

Some classic examples of continuous distributions are

- (continuous) uniform distribution $X \sim U(a, b)$ with $-\infty < a < b < \infty$ has pdf $f_X(x) = \frac{1}{b-a}\chi_{[a,b]}(x)$ for $x \in \mathbb{R}$ where $\chi_S(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$ is the indicator function
- exponential distribution $X \sim \text{Exp}(\lambda)$ with $\lambda > 0$ has pdf $f_X(x) = \lambda e^{-\lambda x} \chi_{x \ge 0}$ for $x \in \mathbb{R}$
- normal distribution / Gaussian distribution $X \sim N(\mu, \sigma^2)$ with $\mu \in \mathbb{R}, \sigma > 0$ has pdf $f_X(x) = (2\pi\sigma^2)^{-1/2} e^{-(\frac{x-\mu}{\sigma})^2/2}$ for $x \in \mathbb{R}$

2.2 Functions of random variables

If X_1, \ldots, X_n are random variables (on the same probability space) and $g : \mathbb{R}^n \to \mathbb{R}$ is a (Borel measurable) function, then $g(X_1, \ldots, X_n)$ is also a random variable. To work on such random variable, it is necessary to consider the *joint distribution* with cdf $F_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = P(X_1 \leq x_1,\ldots,X_n \leq X_n)$.

If X_1, \ldots, X_n are independent, the cdf factorizes $F_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = F_{X_1}(x_1)\ldots F_{X_n}(x_n)$. If X_1,\ldots,X_n are all discrete, the joint pmf is just the product of all pmf $p_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = p_{X_1}(x_1)\ldots p_{X_n}(x_n)$. Similarly, when all random variables are continuous, the joint pdf is $f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = f_{X_1}(x_1)\ldots f_{X_n}(x_n)$.

2.2.1 Sum of discrete random variables

Let X, Y be two independent *discrete* random variables with integer values. Then the pmf of X + Y is

$$p_{X+Y}(z) = P(X+Y=z) = \sum_{k \in \mathbb{Z}} P(X=k, Y=z-k) = \sum_{k \in \mathbb{Z}} P(X=k)P(Y=z-k) = \sum_{k \in \mathbb{Z}} p_X(k)p_Y(z-k)$$

so $p_{X+Y} = p_X * p_Y$ is the (discrete) convolution of p_X and p_Y .

Example 2.1. Consider independent random variables $X \sim \text{Poisson}(\lambda), Y \sim \text{Poisson}(\mu)$. Then

$$p_{X+Y}(z) = \sum_{k \in \mathbb{Z}} p_X(k) p_Y(z-k) = \sum_{k \in \mathbb{Z}} \chi_{k \ge 0} \frac{\lambda^k}{k!} e^{-\lambda} \chi_{z-k \ge 0} \frac{\mu^{z-k}}{(z-k)!} e^{-\mu}$$
$$= e^{-(\lambda+\mu)} \chi_{z \ge 0} \frac{1}{z!} \sum_{k=0}^z \frac{z!}{k!(z-k)!} \lambda^k \mu^{z-k} = e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^z}{z!} \chi_{z \ge 0}$$

so $X + Y \sim \text{Poisson}(\lambda + \mu)$.

By induction, if $X_i \sim \text{Poisson}(\lambda_i), i \in \{1, \dots, n\}$ are independent, then $\sum X_i \sim \text{Poisson}(\sum \lambda_i)$

Exercise 2.3. If X_1, \ldots, X_n are independent and identically distributed (iid) Bernoulli random variables with common parameter $p \in [0, 1]$, show that $X_1 + \ldots + X_n \sim B(n, p)$

2.2.2 Sum of continuous random variables

Let X, Y be two independent *continuous* random variables. Then the cdf of X + Y is

$$F_{X+Y}(z) = P(X+Y \le z) = \int_{-\infty}^{\infty} P(Y \le z - x) f_X(x) \, \mathrm{d}x = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_Y(y) f_X(x) \, \mathrm{d}y \, \mathrm{d}x$$

so $f_{X+Y}(z) = \frac{\mathrm{d}}{\mathrm{d}z} F_{X+Y}(z) = \int_{-\infty}^{\infty} f_Y(z - x) f(x) \, \mathrm{d}x$

hence $f_{X+Y} = f_X * f_Y$ is the (continuous) convolution of f_X and f_Y .

Exercise 2.4. Show that the sum X + Y of independent random variables $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$ is a normal random variable $X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$

2.2.3 Other combinations

Example 2.2. Suppose $X_i \sim \text{Exp}(\lambda_i)$ for $i \in \{1, \ldots, n\}$ with $\lambda_1, \ldots, \lambda_n > 0$ are independent random variables. Then on $Y = \min(X_1, \ldots, X_n)$, its cdf is

$$F_{Y}(y) = P(Y \le y) = 1 - P(Y > y)$$

= 1 - P(X₁ > y, ..., X_n > y)
= 1 - P(X₁ > y) ... P(X_n > y)
= 1 - (1 - P(X₁ ≤ y)) ... (1 - P(X_n ≤ y))
= 1 · $\chi_{y \ge 0} - e^{-\lambda_{1}y} ... e^{-\lambda_{n}y} \chi_{y \ge 0} = (1 - e^{-y \sum \lambda_{i}}) \chi_{y \ge 0}$

because $P(X_i \le y) = \chi_{y \ge 0} (1 - e^{-\lambda_i y})$. So $Y \sim \operatorname{Exp}(\sum \lambda_i)$.

Note that this also implies $P(X_1 = \min(X_1, \ldots, X_n)) = \lambda_1 / \sum \lambda_i$ since on $Z = \min(X_2, \ldots, X_n) \sim \text{Exp}(\lambda)$ with $\lambda = \lambda_2 + \ldots + \lambda_n$, X_1, Z are independent and

$$P(X_1 = Y) = P(X_1 \le Z) = \int_{-\infty}^{\infty} P(X_1 \le z) f_Z(z) dz$$
$$= \int_0^{\infty} (1 - e^{-\lambda_1 z}) \lambda e^{-\lambda z} dz = 1 - \frac{\lambda}{\lambda_1 + \lambda} = \frac{\lambda_1}{\lambda_1 + \lambda} = \frac{\lambda_1}{\sum \lambda_i}$$

Exercise 2.5. Suppose $X_1 \sim \text{Exp}(\lambda_1)$, $X_2 \sim \text{Exp}(\lambda_2)$ with $\lambda_1, \lambda_2 > 0$ are independent random variables. Find the pdf of $\max(X_1, X_2)$.

For random variables that are not independent with each other, it is often necessary to consider the full joint distribution.

2.3 Moments

The expected value of a random variable X is $E(X) = \sum x p_X(x)$ if X is discrete, and $E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$ if X is continuous, assuming the value is well-defined.

Assuming $\mu = E(X)$ is well-defined, The *variance* of a random variable X is $Var(X) = E((X - \mu)^2)$, if it is also well-defined.

Note that these two moments may not be well-defined, e.g. the Cauchy distribution $X \sim \text{Cauchy}(\mu, \gamma)$ with $\mu \in \mathbb{R}, \gamma > 0$ which has pdf $f_X(x) = \frac{\gamma}{\pi} ((x - \mu)^2 + \gamma^2)^{-1}$.

Exercise 2.6. Show that the Cauchy distribution does not have a well-defined expected value

Properties of expected values: if X, Y are random variables, then assuming all quantities are well-defined,

- $\operatorname{E}(cX) = c\operatorname{E}(X)$ for all $c \in \mathbb{R}$
- $\operatorname{E}(X+Y) = \operatorname{E}(X) + \operatorname{E}(Y)$
- $\operatorname{Var}(X) = \operatorname{E}(X^2) \operatorname{E}(X)^2 \ge 0$

- $\operatorname{Var}(cX) = c^2 \operatorname{Var}(X)$ for all $c \in \mathbb{R}$
- (law of total expectation) if A_1, A_2, \ldots are disjoint and $\bigcup A_i = \Omega$, then $E(X) = \sum E(X|A_i) P(A_i)$

Example 2.3. Let X, Y are independent discrete random variables of integer value with finite expected values and variances, then

$$\mathbf{E}\left(XY\right) = \sum \mathbf{E}\left(XY|Y=k\right)P\left(Y=k\right) = \sum k\mathbf{E}\left(X|Y=k\right)P\left(Y=k\right) = \sum k\mathbf{E}\left(X\right)P\left(Y=k\right) = \mathbf{E}\left(X\right)\mathbf{E}\left(Y\right)$$
 Also

Also,

$$Var (X + Y) = E ((X + Y)^{2}) - E (X + Y)^{2}$$

= (E (X²) + 2E (XY) + E (Y²)) - (E (X)² + 2E (X) E (Y) + E (Y)²)
= (E (X²) - E (X)²) + 2(E (XY) - E (X) E (Y)) + (E (Y²) - E (Y)²)
= Var (X) + Var (Y)

These also hold for continuous random variables. Exercise 2.7. Verify that

	expected value	variance
B(n,p)	np	np(1-p)
Poisson(λ)	λ	λ
$\operatorname{Geom}(p)$	1/p	$(1-p)/p^2$
U(a,b)	(a+b)/2	$(b-a)^2/12$
$\operatorname{Exp}(\lambda)$	$1/\lambda$	$1/\lambda^2$
$N(\mu, \sigma^2)$	μ	σ^2