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This is a quick review on the probability theory. For the sake of brevity, some arguments presented here
are only formal with details omitted. For a proper introduction on probability, consult the reference textbooks
listed on the course webpage, courses like MATH3280, MATH4050 and MATH5011, or the Department of
Statistics.

1 Basic concepts

A probability space (Q, F, P) consists of
e sample space €, a nonempty set of all possible outcomes
e cvent space F, a o-algebra on 2 which contains events (subsets of Q) that we would work on
e probability measure P : F — [0, 1], an assignment of probability (size) to events in F

A random wvariable is a measurable function X : Q — A C R that quantifies the outcomes. Shorthand
notations like { X e B} ={w e Q| X(w)eBland{X =a} ={we Q]| X(w) =a} are commonly
used.

1.1 Conditional and independence

Consider two events A, B C Q. If P (B) # 0, the conditional probability of A given B is P (A|B) = Pg?g?)'
A, B are independent if P(AN B) = P(A)P(B), or P(A|B) = P (A) assuming P(B) # 0.

If X,Y are two random variables on the same probability space, then XY are independent if for all
(Borel) sets A, B C R the events { X € A} and { Y € B } are independent, that is P(X € A, Y € B) =
P(X € A)P(Y € B).

Theorem 1.1 (law of total probability). If By, Ba, ... are disjoint and 2 = |J B;, then P (A) =>_ P (AN B;)

2 Distribution functions

For a random variable X, its cumulative distribution function (CDF)is Fx(z) = P(X < z).

If the range of X is countable, X is a discrete random variable, and its probability mass function (PMF)
is px(z) = P(X = z). Commonly the range of a discrete random variable is a subset of integers.
Ezercise 2.1. Show that for a discrete random variable X and its range A = X(Q), 0 < px(z) < 1 for all
reAand ), px(z)=1

If there exists a function fx such that P(a < X < b) = fjfx(x) dz for all a,b € R with a < b, then
X is a continuous random variable, and fx is its probability density function (PDF). Under some simple
conditions, £ Fx = fx, and P(X € 4) = [, fx.

Exzercise 2.2. Show that for a continuous random variable X with continuous pdf fx, fx > 0 on R, and
ffcoofx(x) de =1
In this course, we will (usually) assume a random variable is either discrete or continuous.



2.1 Examples

Some classic examples of discrete distributions are

o binomial distribution X ~ B(n,p) with n € N, p € [0,1] has pmf px (k) = (})p"(1 — p)? for k €
{0,...,n}. Onn =1, B(1,p) is also called Bernoulli distribution

e Poisson distribution X ~ Poisson(A) with A > 0 has pmf px (k) = %1;67)‘ for ke N

e geometric distribution X ~ Geom(p) with p € [0,1] has pmf px (k) = (1 —p)*~p for k € Z+

Some classic examples of continuous distributions are

o (continuous) uniform distribution X ~ U(a,b) with —co < a < b < oo has pdf fx(2) = 7= X[a5(2)
1 ifzesS

for x € R where xgs(z) = . is the indicator function
0 otherwise

e cxponential distribution X ~ Exp(\) with A > 0 has pdf fx(z) = Ae x>0 for z € R

e normal distribution / Gaussian distribution X ~ N(u,0?) with p € R, ¢ > 0 has pdf fx(z) =
(2m02)~1/2e= (52 for 1 € R

2.2 Functions of random variables

If X1,...,X, are random variables (on the same probability space) and g : R* — R is a (Borel measurable)
function, then g(Xi,...,X,) is also a random variable. To work on such random variable, it is necessary to
consider the joint distribution with cdf Fx,  x,(x1,...,2n) =P (X1 <x1, ..., X5 < X,).

If X4,...,X, areindependent, the cdf factorizes Fx, . x, (T1,...,2n) = Fx,(z1)... Fx, (z,). f X3,..., X,
are all discrete, the joint pmf is just the product of all pmf px, . x, (z1,...,2,) = px, (z1)...px, (Tn). Sim-
ilarly, when all random variables are continuous, the joint pdfis fx,, . x,(1,...,2n) = fx,(21) ... fx, (zn).

n

2.2.1 Sum of discrete random variables

Let X,Y be two independent discrete random variables with integer values. Then the pmf of X + Y is

Pxav(x) = PX+Y =2) =S P(X =k, Y =2—k) = S P(X = )P(Y =2 = k) = > px (K)py (= — k)
k€zZ k€Z k€Z

SO px+y = DPx * py is the (discrete) convolution of px and py.

Ezample 2.1. Consider independent random variables X ~ Poisson(\), Y ~ Poisson(x). Then

)\k; _ z—k
px+v(2) = pr(k)py(z —k)= ZX;@OEG AXz—kz0 (ZM_ W)l
kezZ kEZ ’ ’

!

B 1< 2! _ - (A4 p)*
— o~ (+p) 7}:7kzk_ M) \IATH)
—° “Xzzoz!k k‘!(z—k)!A S
=0

so X +Y ~ Poisson(\ + p).
By induction, if X; ~ Poisson();), ¢ € { 1,...,n } are independent, then ) X; ~ Poisson(> \;)

Ezercise 2.3. If X1, ..., X,, are independent and identically distributed (iid) Bernoulli random variables with
common parameter p € [0, 1], show that X; +... 4+ X,, ~B(n,p)



2.2.2 Sum of continuous random variables

Let X,Y be two independent continuous random variables. Then the cdf of X + Y is
Fxiy(z)=P(X+Y <2z2)= / P(Y<z-—z)fx(x )dx—/ / fr(y)fx(z) dy dx
—0o0 Y —00

so  fxiv(z) = 7FX+Y / fy(z—z)f(x) d

hence fxiy = fx * fy is the (continuous) convolution of fx and fy.

Ezercise 2.4. Show that the sum X + Y of 1ndependent random variables X ~ N(ux,0%), Y ~ N(uy,0?)
is a normal random variable X +Y ~ N(ux + py,0% + 0%)

2.2.3 Other combinations

Ezample 2.2. Suppose X; ~ Exp(\;) for i € {1,...,n} with A\,...;\, > 0 are independent random
variables. Then on Y = min(X;,...,X,,), its cdf is

Fy(y)=PY <y)=1-P(Y >y)
—1-P(X1>Y ..., Xpn > 1)
=1-P(X;>y)...P(X, >v)
=1-(1-P(X1<y)...(1-P (X, <y))

=1 xyzo— € Mo e T Myn0 = (e V2N x50
because P (X; <y) = xy>0(l —e ). So Y ~ Exp(>_ ).

Note that this also implies P (X; = min(Xq,...,X,)) = A/D> A since on Z = min(Xo,..., X,,) ~
Exp(A) with A =Xy + ...+ A\, X1, Z are independent and

P(Xle):P(XlgZ):/_OOP(Xlgz)fZ(z) dz

e A A A
= / (1—e ) e dz=1-— ! !
0
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Ezercise 2.5. Suppose X; ~ Exp(A1), Xo ~ Exp(A2) with A\, Ay > 0 are independent random variables.
Find the pdf of max(X;, Xs).

For random variables that are not independent with each other, it is often necessary to consider the full
joint distribution.

2.3 Moments

The ezpected value of a random variable X is E (X) = " apx () if X is discrete, and E (X) = [*_zfx(z) dz
if X is continuous, assuming the value is well-defined.

Assuming o = E (X) is well-defined, The variance of a random variable X is Var (X) = E (X — p)?), if
it is also well-defined.

Note that these two moments may not be well-defined, e.g. the Cauchy distribution X ~ Cauchy(u, ")
with p € R, 7 > 0 which has pdf fx(z) = 2((x — p)? +~2)""

Exercise 2.6. Show that the Cauchy distribution does not have a well-defined expected value

Properties of expected values: if X,Y are random variables, then assuming all quantities are well-defined,
e E(cX)=cE(X)forallceR
e E(X+Y)=E(X)+E(®Y)

o Var(X)=E (X?) -E(X)*>0



e Var (cX) = c¢*Var (X) for all c € R
e (law of total expectation) if A, A,,... are disjoint and |JA4; = Q, then E(X) =Y E (X|A4;) P(A4;)

Example 2.3. Let X,Y are independent discrete random variables of integer value with finite expected values
and variances, then

E(XY)=) EXY[Y =k)P(Y =k =) kEX|Y=k)P( =k =Y kEX)P(Y =k =E(X)E(Y)
Also,

Var(X +Y)=E((X +Y)?) —~E(X +Y)?

= (E(X?) +2E XY) +E(Y?) - (E(X)’ +2E(X)E(Y) +E(Y)?)
= (E(X?) —E(X)*) +2(E(XY) -E(X)E(Y)) + (E (Y?) —E(Y)?)
7Var(X)+Var( )

These also hold for continuous random variables.
Exercise 2.7. Verify that

expected value variance
B(n,p) np np(l—p)
Poisson(\) A A
Geom(p) 1/p (1-p)/p?
U(a,b) (a+b)/2 (b—a)?/12
Exp( ) /A 1/)\2
N(u,0?) 1 o’
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