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This is a quick review on the probability theory. For the sake of brevity, some arguments presented here
are only formal with details omitted. For a proper introduction on probability, consult the reference textbooks
listed on the course webpage, courses like MATH3280, MATH4050 and MATH5011, or the Department of
Statistics.

1 Basic concepts

A probability space (Ω,F , P ) consists of

� sample space Ω, a nonempty set of all possible outcomes

� event space F , a σ-algebra on Ω which contains events (subsets of Ω) that we would work on

� probability measure P : F → [0, 1], an assignment of probability (size) to events in F

A random variable is a measurable function X : Ω → A ⊆ R that quantifies the outcomes. Shorthand
notations like { X ∈ B } = { ω ∈ Ω | X(ω) ∈ B } and { X = a } = { ω ∈ Ω | X(ω) = a } are commonly
used.

1.1 Conditional and independence

Consider two events A,B ⊆ Ω. If P (B) ̸= 0, the conditional probability of A given B is P (A|B) = P (A∩B)
P (B) .

A,B are independent if P (A ∩B) = P (A)P (B), or P (A|B) = P (A) assuming P (B) ̸= 0.
If X,Y are two random variables on the same probability space, then X,Y are independent if for all

(Borel) sets A,B ⊆ R the events { X ∈ A } and { Y ∈ B } are independent, that is P (X ∈ A, Y ∈ B) =
P (X ∈ A)P (Y ∈ B).

Theorem 1.1 (law of total probability). If B1, B2, . . . are disjoint and Ω =
⋃
Bi, then P (A) =

∑
P (A ∩Bi)

2 Distribution functions

For a random variable X, its cumulative distribution function (CDF) is FX(x) = P (X ≤ x).
If the range of X is countable, X is a discrete random variable, and its probability mass function (PMF)

is pX(x) = P (X = x). Commonly the range of a discrete random variable is a subset of integers.

Exercise 2.1. Show that for a discrete random variable X and its range A = X(Ω), 0 ≤ pX(x) ≤ 1 for all
x ∈ A, and

∑
x∈A pX(x) = 1

If there exists a function fX such that P (a ≤ X ≤ b) =
∫ b

a
fX(x) dx for all a, b ∈ R with a ≤ b, then

X is a continuous random variable, and fX is its probability density function (PDF). Under some simple
conditions, d

dxFX = fX , and P (X ∈ A) =
∫
A
fX .

Exercise 2.2. Show that for a continuous random variable X with continuous pdf fX , fX ≥ 0 on R, and∫∞
−∞fX(x) dx = 1

In this course, we will (usually) assume a random variable is either discrete or continuous.
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2.1 Examples

Some classic examples of discrete distributions are

� binomial distribution X ∼ B(n, p) with n ∈ N, p ∈ [0, 1] has pmf pX(k) =
(
n
k

)
pk(1 − p)p for k ∈

{ 0, . . . , n }. On n = 1, B(1, p) is also called Bernoulli distribution

� Poisson distribution X ∼ Poisson(λ) with λ > 0 has pmf pX(k) = λk

k! e
−λ for k ∈ N

� geometric distribution X ∼ Geom(p) with p ∈ [0, 1] has pmf pX(k) = (1− p)k−1p for k ∈ Z+

Some classic examples of continuous distributions are

� (continuous) uniform distribution X ∼ U(a, b) with −∞ < a < b < ∞ has pdf fX(x) = 1
b−aχ[a,b](x)

for x ∈ R where χS(x) =

{
1 if x ∈ S

0 otherwise
is the indicator function

� exponential distribution X ∼ Exp(λ) with λ > 0 has pdf fX(x) = λe−λxχx≥0 for x ∈ R

� normal distribution / Gaussian distribution X ∼ N(µ, σ2) with µ ∈ R, σ > 0 has pdf fX(x) =

(2πσ2)−1/2e−( x−µ
σ )2/2 for x ∈ R

2.2 Functions of random variables

If X1, . . . , Xn are random variables (on the same probability space) and g : Rn → R is a (Borel measurable)
function, then g(X1, . . . , Xn) is also a random variable. To work on such random variable, it is necessary to
consider the joint distribution with cdf FX1,...,Xn

(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ Xn).
IfX1, . . . , Xn are independent, the cdf factorizes FX1,...,Xn(x1, . . . , xn) = FX1(x1) . . . FXn(xn). IfX1, . . . , Xn

are all discrete, the joint pmf is just the product of all pmf pX1,...,Xn(x1, . . . , xn) = pX1(x1) . . . pXn(xn). Sim-
ilarly, when all random variables are continuous, the joint pdf is fX1,...,Xn

(x1, . . . , xn) = fX1
(x1) . . . fXn

(xn).

2.2.1 Sum of discrete random variables

Let X,Y be two independent discrete random variables with integer values. Then the pmf of X + Y is

pX+Y (z) = P (X + Y = z) =
∑
k∈Z

P (X = k, Y = z − k) =
∑
k∈Z

P (X = k)P (Y = z − k) =
∑
k∈Z

pX(k)pY (z − k)

so pX+Y = pX ∗ pY is the (discrete) convolution of pX and pY .

Example 2.1. Consider independent random variables X ∼ Poisson(λ), Y ∼ Poisson(µ). Then

pX+Y (z) =
∑
k∈Z

pX(k)pY (z − k) =
∑
k∈Z

χk≥0
λk

k!
e−λχz−k≥0

µz−k

(z − k)!
e−µ

= e−(λ+µ)χz≥0
1

z!

z∑
k=0

z!

k!(z − k)!
λkµz−k = e−(λ+µ) (λ+ µ)z

z!
χz≥0

so X + Y ∼ Poisson(λ+ µ).
By induction, if Xi ∼ Poisson(λi), i ∈ { 1, . . . , n } are independent, then

∑
Xi ∼ Poisson(

∑
λi)

Exercise 2.3. If X1, . . . , Xn are independent and identically distributed (iid) Bernoulli random variables with
common parameter p ∈ [0, 1], show that X1 + . . .+Xn ∼ B(n, p)
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2.2.2 Sum of continuous random variables

Let X,Y be two independent continuous random variables. Then the cdf of X + Y is

FX+Y (z) = P (X + Y ≤ z) =

∫ ∞

−∞
P (Y ≤ z − x) fX(x) dx =

∫ ∞

−∞

∫ z−x

−∞
fY (y)fX(x) dy dx

so fX+Y (z) =
d

dz
FX+Y (z) =

∫ ∞

−∞
fY (z − x)f(x) dx

hence fX+Y = fX ∗ fY is the (continuous) convolution of fX and fY .

Exercise 2.4. Show that the sum X + Y of independent random variables X ∼ N(µX , σ2
X), Y ∼ N(µY , σ

2
Y )

is a normal random variable X + Y ∼ N(µX + µY , σ
2
X + σ2

Y )

2.2.3 Other combinations

Example 2.2. Suppose Xi ∼ Exp(λi) for i ∈ { 1, . . . , n } with λ1, . . . , λn > 0 are independent random
variables. Then on Y = min(X1, . . . , Xn), its cdf is

FY (y) = P (Y ≤ y) = 1− P (Y > y)

= 1− P (X1 > y, . . . , Xn > y)

= 1− P (X1 > y) . . . P (Xn > y)

= 1− (1− P (X1 ≤ y)) . . . (1− P (Xn ≤ y))

= 1 · χy≥0 − e−λ1y . . . e−λnyχy≥0 = (1− e−y
∑

λi)χy≥0

because P (Xi ≤ y) = χy≥0(1− e−λiy). So Y ∼ Exp(
∑

λi).
Note that this also implies P (X1 = min(X1, . . . , Xn)) = λ1/

∑
λi since on Z = min(X2, . . . , Xn) ∼

Exp(λ) with λ = λ2 + . . .+ λn, X1, Z are independent and

P (X1 = Y ) = P (X1 ≤ Z) =

∫ ∞

−∞
P (X1 ≤ z) fZ(z) dz

=

∫ ∞

0

(1− e−λ1z)λe−λz dz = 1− λ

λ1 + λ
=

λ1

λ1 + λ
=

λ1∑
λi

Exercise 2.5. Suppose X1 ∼ Exp(λ1), X2 ∼ Exp(λ2) with λ1, λ2 > 0 are independent random variables.
Find the pdf of max(X1, X2).

For random variables that are not independent with each other, it is often necessary to consider the full
joint distribution.

2.3 Moments

The expected value of a random variableX is E (X) =
∑

xpX(x) ifX is discrete, and E (X) =
∫∞
−∞xfX(x) dx

if X is continuous, assuming the value is well-defined.
Assuming µ = E(X) is well-defined, The variance of a random variable X is Var (X) = E

(
(X − µ)2

)
, if

it is also well-defined.
Note that these two moments may not be well-defined, e.g. the Cauchy distribution X ∼ Cauchy(µ, γ)

with µ ∈ R, γ > 0 which has pdf fX(x) = γ
π ((x− µ)2 + γ2)−1.

Exercise 2.6. Show that the Cauchy distribution does not have a well-defined expected value

Properties of expected values: if X,Y are random variables, then assuming all quantities are well-defined,

� E (cX) = cE (X) for all c ∈ R

� E (X + Y ) = E (X) + E (Y )

� Var (X) = E
(
X2

)
− E (X)

2 ≥ 0
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� Var (cX) = c2Var (X) for all c ∈ R

� (law of total expectation) if A1, A2, . . . are disjoint and
⋃

Ai = Ω, then E (X) =
∑

E (X|Ai)P (Ai)

Example 2.3. Let X,Y are independent discrete random variables of integer value with finite expected values
and variances, then

E (XY ) =
∑

E (XY |Y = k)P (Y = k) =
∑

kE (X|Y = k)P (Y = k) =
∑

kE (X)P (Y = k) = E (X) E (Y )

Also,

Var (X + Y ) = E
(
(X + Y )2

)
− E (X + Y )

2

= (E
(
X2

)
+ 2E (XY ) + E

(
Y 2

)
)− (E (X)

2
+ 2E (X) E (Y ) + E (Y )

2
)

= (E
(
X2

)
− E (X)

2
) + 2(E (XY )− E (X) E (Y )) + (E

(
Y 2

)
− E (Y )

2
)

= Var (X) + Var (Y )

These also hold for continuous random variables.

Exercise 2.7. Verify that

expected value variance
B(n, p) np np(1− p)

Poisson(λ) λ λ
Geom(p) 1/p (1− p)/p2

U(a, b) (a+ b)/2 (b− a)2/12
Exp(λ) 1/λ 1/λ2

N(µ, σ2) µ σ2
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