
MATH4240 Homework 3 Reference Solution

1 Compulsory Part

15. Let y be a transient state. Use (36) to show that for all x,

∞∑
n=0

Pn(x, y) ≤
∞∑

n=0

Pn(y, y)

Solution: It suffices to consider the case x ̸= y. Then

∞∑
n=0

Pn(x, y) =

∞∑
n=1

Pn(x, y) = Ex(N(y)) =
ρxy

1− ρyy
≤ 1

1− ρyy
= 1 +

ρyy
1− ρyy

= 1 + Ey(N(y)) =

∞∑
n=0

Pn(y, y)

18. Consider a Markov chain on the nonnegative integers such that, starting from x, the chain goes to state x + 1 with
probability p, 0 < p < 1, and goes to state 0 with probability 1− p.

(a) Show that this chain is irreducible

(b) Find P0(T0 = n), n ≥ 1

(c) Show that the chain is recurrent

Solution:

(a) Let x, y be two states. Then ρxy ≥ P (x, 0)P (0, 1) . . . P (y − 1, y) = (1− p)py > 0. So x leads to y.

As x, y are arbitrary, the chain is irreducible.

(b) Starting from 0, there is only one path that goes to 0 only after n steps: X0 = 0, X1 = 1, . . . , Xn−1 =
n− 1, Xn = 0. So P0(T0 = n) = P (0, 1)P (1, 2) . . . P (n− 2, n− 1)P (n− 1, 0) = pn−1(1− p)

(c) Since the chain is irreducible, it suffices to show that 0 is a recurrent state.

By part (b), ρ00 =
∑∞

n=1 E0(T0 = n) =
∑∞

n=1 p
n−1(1− p) = 1. So 0 is a recurrent state. Therefore the chain is

recurrent.

20(b). Consider the Markov chain on {0, 1, . . . , 5} having transition matrix



0 1 2 3 4 5
0 1

2
1
2 0 0 0 0

1 1
3

2
3 0 0 0 0

2 0 0 1
8 0 7

8 0
3 1

4
1
4 0 0 1

4
1
4

4 0 0 3
4 0 1

4 0
5 0 1

5 0 1
5

1
5

2
5


Find ρ{0,1}(x), x = 0, . . . , 5

Solution: As in HW2, the transition diagram is

1



0

1

3

5

4 2

1/2

1/2

2/3

1/3

1/8

7/8

1/4

1/4 1/4

1/4

3/4

1/4

1/5

1/5

1/5

2/5

and {0, 1}, {2, 4} are irreducible closed sets.

Easy to see that ρ{0,1}(0) = ρ{0,1}(1) = 1, and ρ{0,1}(2) = ρ{0,1}(4) = 0.

By the one-step argument,

ρ{0,1}(3) = P (3, 0) + P (3, 1) + P (3, 5)ρ{0,1}(5) =
1

2
+

1

4
ρ{0,1}(5)

ρ{0,1}(5) = P (5, 1) + P (5, 3)ρ{0,1}(3) + P (5, 5)ρ{0,1}(5) =
1

5
+

1

5
ρ{0,1}(3) +

2

5
ρ{0,1}(5)

Solving this linear system gives ρ{0,1}(3) =
7
11 and ρ{0,1}(5) =

6
11 .

Note

0 1 2 3 4 5
ρ{0,1}(x) 1 1 0 7/11 0 6/11

We can also reduce the chain as

P̃ =


{0, 1} {2, 4} 3 5

{0, 1} 1 0 0 0
{2, 4} 0 1 0 0

3 1/2 1/4 0 1/4
5 1/5 1/5 1/5 2/5


which gives (

ρ{0,1}(3) ρ{2,4}(3)
ρ{0,1}(5) ρ{2,5}(5)

)
=

(
I −

(
0 1/4

1/5 2/5

))−1(
1/2 1/4
1/5 1/5

)
=

(
7/11 4/11
6/11 5/11

)

24. Consider a gambler’s ruin chain on {0, 1, . . . , d}. Find

Px(T0 < Td), 0 < x < d

Solution: Recall that the transition function for x ∈ {1, . . . , d− 1} is

P (x, y) =


p y = x+ 1

q y = x− 1

0 other

with q = 1− p.

As the chain is just a birth and death chain with constant px = p, qx = q, applying the formula gives

Px(T0 < Td) =

∑d−1
y=x γy∑d−1
y=0 γy
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with γy =
q1...qy
p1...py

= ( qp )
y.

� If p = 1
2 , we have γy = ( qp )

y = 1, so
∑d−1

y=x γy = d− x,
∑d−1

y=0 γy = d

� If p ̸= 1
2 , we have γy ̸= 1 and so

∑d−1
y=x γy = (q/p)x−(q/p)d

1−q/p ,
∑d−1

y=0 γy = 1−(q/p)d

1−q/p

This implies that

Px(T0 < Td) =

{
1− x

d if p = 1/2
(q/p)x−(q/p)d

1−(q/p)d
if p ̸= 1/2

26. Consider a birth and death chain on the nonnegative integers such that px > 0 and qx > 0 for x ≥ 1

(a) Show that if
∑∞

y=0 γy = ∞, then ρx0 = 1, x ≥ 1

(b) Show that if
∑∞

y=0 γy < ∞, then

ρx0 =

∑∞
y=x γy∑∞
y=0 γy

, x ≥ 1

Solution: Since the chain has infinitely states, T0 < ∞ iff there is some state n > x such that T0 < Tn (where Tn

can be infinite). This implies that {T0 < ∞} = {T0 < Tn for some n > x} =
⋃

n>x{T0 < Tn}.
Furthermore, for n > x, you can only reach state n+1 after reaching state n, so {T0 < Tn} is increasing. This means

that ρx0 = Px(T0 < ∞) = Px(
⋃

n>x{T0 < Tn}) = limn→∞ Px(T0 < Tn) = 1− (
∑x−1

y=0 γy) lim
n→∞

(
∑n−1

y=0 γy)
−1.

(a) If
∑∞

y=0 γy = ∞, then ρx0 = 1− (
∑x−1

y=0 γy) lim
n→∞

(
∑n−1

y=0 γy)
−1 = 1 for all x ≥ 1

(b) If
∑∞

y=0 γy < ∞, then ρx0 = 1− (
∑x−1

y=0 γy) lim
n→∞

(
∑n−1

y=0 γy)
−1 = 1−

∑x−1
y=0 γy∑n−1
y=0 γy

=
∑∞

y=x γy∑n−1
y=0 γy

for all x ≥ 1

27. Consider a gambler’s ruin chain on {0, 1, 2, . . .}
(a) Show that if q ≥ p, then ρx0 = 1, x ≥ 1

(b) Show that if q < p, then ρx0 = (q/p)x, x ≥ 1

Solution: γy =
∏y

x=1
qx
px

= (q/p)y.

(a) If q ≥ p, γy = (q/p)y ≥ 1, so
∑∞

y=0 γy ≥
∑∞

y=0 1 = ∞. By Q26(a), ρx0 = 1 for each x ≥ 1.

(b) If q < p,
∑∞

y=0 γy =
∑∞

y=0(q/p)
y = 1

1−q/p < ∞. So by Q26(b), ρx0 =
∑∞

y=x γy∑∞
y=0 γy

= (q/p)x

1−q/p/
1

1−q/p = (q/p)x for each

x ≥ 1.

29. Consider an irreducible birth and death chain on the nonnegative integers such that

qx
px

=

(
x

x+ 1

)2

, x ≥ 1

(a) Show that this chain is transient

(b) Find ρx0, x ≥ 1

Solution:

(a) For each y ≥ 1,

γy =

y∏
x=1

qx
px

=

(
y∏

x=1

x

x+ 1

)2

=
1

(y + 1)2

Then
∑∞

x=0 γx = 1 +
∑∞

n=2 n
−2 = π2/6 < ∞. So the chain is transient.
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(b) By Q26(b), ρx0 =
∑∞

y=x γy∑∞
y=0 γy

= 1−
∑x

y=0 γy∑∞
y=0 γy

= 1− 6
π2

∑x+1
n=1 n

−2 for each x ≥ 1.

Note

There does not seem to be a (simple elementary) closed form expression for this sum.

32. Consider the branching chain described in Example 14. If a given man has two boys and one girl, what is the probability
that his male line will continue forever?

Solution: Recall that in Example 14, every man has exactly 3 children, each independently has probability p = 1/2
of being a boy. From the textbook, the distinction probability is solved as ρ =

√
5− 2.

Therefore, P (continue forever) = 1− P (both boys extinct) = 1− ρ2 = 4(
√
5− 2) ≈ 0.9442

Note

For completeness, the extinction probability can be computed via the generating function of the offspring distribution:
Φ(t) =

∑∞
k=0 pkt

k =
∑3

k=0

(
3
k

)
2−3tk = 2−3(1 + t)3. As Φ′(1) = 3/2 > 1 and the solutions of t = Φ(t) are t = 1,

t = −
√
5− 2 < 0 and t =

√
5− 2 ∈ [0, 1], ρ =

√
5− 2.

34. Consider a branching chain with f(x) = p(1 − p)x, x ≥ 0, where 0 < p < 1. Show that ρ = 1 if p ≥ 1/2 and that
ρ = p/(1− p) if p < 1/2

Solution: The generating function of f is Φ(t) =
∑∞

n=0 f(n)t
n =

∑∞
n=0 p(1 − p)ntn = p

1−(1−p)t with µ = Φ′(1) =
1
p − 1.

� If p ≥ 1/2, µ = 1
p − 1 ≤ 1, so ρ = 1

� If p < 1/2, µ = 1
p − 1 = 1−p

p > 1. As the equation t = Φ(t) = p
1−(1−p)t then has solutions t = 1 and

t = p
1−p ∈ [0, 1], so ρ = p

1−p .

36(a). Let Xn, n ≥ 0, be a branching chain and suppose that the associated random variable ξ has finite variance σ2. Show
that

E
(
X2

n+1

∣∣Xn = x
)
= xσ2 + x2µ2

Solution: Let ξi be the random variable denoting the number of particles that particle i generates. Then

E
(
X2

n+1

∣∣Xn = x
)
= E

(
(ξ1 + . . .+ ξx)

2
)

=
∑

1≤i,j≤x

E (ξiξj)

=
∑
i

E
(
ξ2i
)
+ 2

∑
1≤i<j≤x

E (ξi)E (ξj)

= x(σ2 + µ2) + 2

(
x

2

)
µ2 = xσ2 + x2µ2

Here E (ξiξj) = E (ξi)E (ξj) for i ̸= j due to the independence of the random variables.

Note

Alternatively, E
(
X2

n+1

∣∣Xn = x
)
= Var (Xn+1|Xn = x)+E (Xn+1|Xn = x)

2
= Var (ξ1 + . . .+ ξx)+E (ξ1 + . . .+ ξx)

2
=∑

Var (ξi) + (
∑

E (ξi))
2 = xσ2 + (xµ)2 as ξ1, . . . , ξx are independent and identically distributed.
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2 Optional Part

17. Show that if x leads to y and y leads to z, then x leads to z

Solution: Since x leads to y and y leads to z, there exist n,m ∈ Z+ such that Pn(x, y) > 0, Pm(y, z) > 0. Then
ρxz ≥ Pn+m(x, z) ≥ Pm(y, z)Pn(x, y) > 0, so x leads to z.

23. A certain Markov chain that arises in genetics has states 0, 1, . . . , 2d and transition function

P (x, y) =

(
2d

y

)( x

2d

)y (
1− x

2d

)2d−y

Find ρ{0}(x), 0 < x < 2d

Solution: Note that by the transition function, P (0, 0) = P (2d, 2d) = 1. So 0, 2d are absorbing and thus recurrent,
and we can see that all other states are transient. In particular, ρ{0}(x) = ρx0.

Let Xn, n ≥ 0 be the chain random variables. By direct computation,

E (Xn+1|Xn = x) =

2d∑
y=0

yP (x, y)

=

2d∑
y=0

y

(
2d

y

)
(
x

2d
)y(1− x

2d
)2d−y

= x

2d∑
y=1

(2d− 1)!

(y − 1)!(2d− y)!
(
x

2d
)y−1(1− x

2d
)2d−y

= x

and so for k ≥ 0

E (Xn+k+1|Xn = x) =

2d∑
y=0

E (Xn+k+1|Xn = x,Xn+k = y)P (Xn+k = y|Xn = x)

=

2d∑
y=0

yP (Xn+k = y|Xn = x)

= E (Xn+k|Xn = x)

Trivially, Ex(X0) = x. By induction, Ex(Xn) = E (Xn|X0 = x) = x for all x and n ≥ 0, which is a constant
independent of n.

Since all states y ∈ {1, 2, . . . , 2d − 1} are transient, we have Ex(N(y)) =
∑∞

n=1 P
n(x, y) < ∞. This implies that

lim
n→∞

Pn(x, y) = 0 for all such y.

As 0, 2d are absorbing, for y ∈ {0, 2d} we must have lim
n→∞

Pn(x, y) = lim
n→∞

Px(Ty ≤ n) = Px(Ty < ∞) = ρxy.

Combined, these imply that for all x ∈ {1, 2, . . . , 2d− 1},

2d− x = lim
n→∞

Ex(2d−Xn) = lim
n→∞

2d∑
y=0

(2d− y)Pn(x, y) =

2d∑
y=0

(2d− y) lim
n→∞

Pn(x, y) = 2dρx0

and so ρx0 = 2d−x
2d = 1− x

2d .

Note

The model in question is the Wright–Fisher model that describes the number of a specific type of allele at a given
locus on N diploids (or equivalently 2N haploids) in generations undergoing binomial sampling, assuming there is
only two allelic types. Please only consult the School of Life Sciences for what this means.
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As shown in the proof, the chain is also a martingale. That Ex(Xn) = x for all n is a result of this. The same proof
can also be used on gambler’s ruin chain with fair probability, which is why they have the same extinct probability.

If you are able to guess the form of the solution, you can verify it by checking the one-step argument equations

ρx0 = P (x, 0) +

2d−1∑
y=1

P (x, y)ρy0

= (1− x

2d
)2d +

2d−1∑
y=1

(
2d

y

)
(
x

2d
)y(1− x

2d
)2d−yρy0, x ∈ {1, . . . , 2d− 1}

As covered in lecture, the solution to this system exists and is unique since there are only finitely many (transient)
states. So the solution you guessed must then be the correct one. For this question, the solution can be guessed by
observing that, with ρ00 = 1 and ρ2d,0 = 0,

ρx0 =

2d∑
y=0

(
2d

y

)
(
x

2d
)y(1− x

2d
)2d−yρy0

= (1− x

2d
)

2d−1∑
y=0

(2d− 1)!

y!(2d− 1− y)!
(
x

2d
)y(1− x

2d
)2d−1−y · 2d

2d− y
ρy0

and so if 2d
2d−yρy0 = 1, the equation simplifies to ρx0 = 1− x

2d , and everything matches nicely.

If you have another solution, particularly if you are able to solve the one-step system above without guessing the
solution, please share it with us.

25. A gambler playing roulette makes a series of one dollar bets. He has respective probability 9/19 and 10/19 of winning
and losing each bet. The gambler decides to quit playing as soon as he either is one dollar ahead or has lost of initial
capital of $100.

(a) Find the probability that when he quits playing he will have lost $1000.

(b) Find his expected loss.

Solution:

(a) By Q24, P1000(T0 < T1001) =
(q/p)x−(q/p)d

1−(q/p)d
= (10/9)1000 10/9−1

(10/9)1001−1 ≈ 0.1 + 1.6 × 10−47 with p = 9
19 , q = 10

19 ,

x = 1000, and d = 1001.

Note

We can estimate this by P1000(T0 < T1001) ≈ (10/9)1000 10/9−1
(10/9)1001 = 1/9

10/9 = 1
10 , which is quite accurate.

(b) The expected loss is

$1000 · P1000(T0 < T1001)− ($1001− $1000)(1− P1000(T0 < T1001)) = $1001 · P1000(T0 < T1001)− $1 ≈ $99.1

28. Consider an irreducible birth and death chain on the nonnegative integers. Show that if px ≤ qx for x ≥ 1, the chain is
recurrent.

Solution: For y ∈ N, γy =
∏y

x=1
qx
px

≥
∏y

x=1 1 = 1. So
∑∞

y=0 γy ≥
∑∞

y=0 1 = ∞. By Q26(a), ρ10 = 1.

As the chain is a birth and death chain on nonnegative numbers, P (0, 0) + P (0, 1) = 1. So by one-step argument,

ρ00 = P (0, 0) + P (0, 1)ρ10 = P (0, 0) + P (0, 1) = 1

Hence 0 is a recurrent state. As the chain is irreducible, the whole chain is recurrent.
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Note

The converse does not hold: consider a chain with p1 = 2/3, q1 = 1/3, px = x
2x−1 , qx = x−1

2x−1 for x ≥ 2. Then

px > qx on x ≥ 1 but γy =
∏y

x=1
qx
px

= 1
2y on y ≥ 1 which gives

∑∞
y=0 γy = ∞ and so the chain is recurrent.

30. Consider the birth and death chain in Example 13.

(a) Compute Px(Ta < Tb) for a < x < b

(b) Compute ρx0, x > 0

Solution: Recall that the chain has transition probabilities px = x+2
2(x+1) and qx = x

2(x+1) for x ≥ 0. As computed in

the textbook, γx = 2( 1
x+1 − 1

x+2 ) for x ∈ N.

For c < d,
∑d−1

x=c γx = 2
∑d−1

x=c(
1

x+1 − 1
x+2 ) = 2( 1

c+1 − 1
d+1 ). In particular,

∑∞
x=c γx = 2

c+1 and
∑∞

y=0 γy = 2 < ∞.

(a) For a < x < b, Px(Ta < Tb) =
∑b−1

y=x γy∑b−1
y=a γy

=
2( 1

x+1−
1

b+1 )

2( 1
a+1−

1
b+1 )

= (b−x)(a+1)
(b−a)(x+1)

(b) By Q26(b), for x ≥ 1 we have ρx0 =
∑∞

y=x γy∑∞
y=0 γy

= 2/(x+1)
2 = 1

x+1

31. Consider a branching chain such that f(1) < 1. Show that every state other than 0 is transient

Solution: Note that 0 is an absorbing state. To analyze the recurrent probability, we will consider the following
two cases:

� If f(0) > 0, then ρx0 ≥ P (x, 0) = f(0)x > 0 for each x ≥ 1. This implies that ρxx < 1 and so x is transient for
all x ≥ 1.

� If f(0) = 0, then for each x ≥ 1 and x > y ≥ 0, P (x, y) = 0, which implies that ρxx = P (x, x) = f(1)x < 1 and
thus x is transient.

33. Consider a branching chain with f(0) = f(3) = 1/2. Find the probability ρ of extinction

Solution: The expected number of particles generated is E (ξ) = 0 ·f(0)+3 ·f(3) = 3/2 > 1. So we need to consider
the generating function Φ of the distribution of offspring.

The generating function is Φ(t) =
∑

f(n)tn = 1
2 (1 + t3), and so Φ(t) = t, or equivalently (t− 1)(t2 + t− 1) = 0, has

solutions t = 1, t = −1+
√
5

2 ∈ [0, 1], t = −1−
√
5

2 < 0. Hence the extinction probability is ρ = −1+
√
5

2 ≈ 0.618

35. Let Xn, n ≥ 0, be a branching chain. Show that Ex(Xn) = xµn

Solution: We will show by induction on n that Ex(Xn) = xµn for each n ≥ 0. The base cases n = 0 and n = 1
hold trivially. Suppose now that Ex(Xk) = xµk for some k ≥ 1. Then by the law of total expectation,

Ex(Xk+1) = E (Xk+1|X0 = x) =

∞∑
y=0

E (Xk+1|Xk = y, X0 = x)P (Xk = y|X0 = x)

=

∞∑
y=0

E (Xk+1|Xk = y)P (Xk = y|X0 = x)

=

∞∑
y=0

yµP (Xk = y|X0 = x)

= µE (Xk|X0 = x)

= xµk+1
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So by induction Ex(Xn) = xµn for all n ≥ 0.

36(b, c, d). Let Xn, n ≥ 0, be a branching chain and suppose that the associated random variable ξ has finite variance σ2.

(b) Use Exercise 35 to show that
Ex(X

2
n+1) = xµnσ2 + µ2Ex(X

2
n)

(c) Show that
Ex(X

2
n) = xσ2(µn−1 + . . .+ µ2(n−1)) + x2µ2n, n ≥ 1

(d) Show that if there are x particles initially, then for n ≥ 1,

Var (Xn) =

{
xσ2µn−1

(
1−µn

1−µ

)
µ ̸= 1

nxσ2 µ = 1

Solution:

(b) By part (a) and Q35,

Ex(X
2
n+1) =

∞∑
y=0

E
(
X2

n+1

∣∣Xn = y
)
Px(Xn = y)

=

∞∑
y=0

(yσ2 + y2µ2)Px(Xn = y)

= σ2Ex(Xn) + µ2Ex(X
2
n)

= σ2xµn + µ2Ex(X
2
n)

(c) By part (a), Ex(X
2
1 ) = E

(
X2

1

∣∣X0 = x
)
= xσ2 + x2µ2.

If µ = 1 , then by part (b) Ex(X
2
n+1) = xσ2+Ex(X

2
n) and so Ex(X

2
n) = nxσ2+x2 = xσ2(µn−1+ . . .+µ2n−2)+

x2µ2n.

Consider now the case that µ < 1. By the result of part (b),

Ex(X
2
n+1) = xµnσ2 + µ2Ex(X

2
n)

µ1−(n+1)Ex(X
2
n+1)−

xσ2

1− µ
= µ

(
µ1−nEx(X

2
n)−

xσ2

1− µ

)
which implies µ1−nEx(X

2
n)−

xσ2

1− µ
= µn−1

(
Ex(X

2
1 )−

xσ2

1− µ

)
= µn−1

(
−xσ2 µ

1− µ
+ x2µ2

)
Ex(X

2
n) = xσ2µn−1 1− µn

1− µ
+ x2µ2n

= xσ2(µn−1 + . . .+ µ2n−2) + x2µ2n

Note

Alternatively this can also be done by induction.

(d) By Q35, Ex(Xn) = xµn. So

Var (Xn) = Ex(X
2
n)− Ex(Xn)

2

= xσ2(µn−1 + . . .+ µ2n−2) + x2µ2n − (xµn)2

= xσ2(µn−1 + . . .+ µ2n−2)

=

{
xσ2µn−1 1−µn

1−µ if µ ̸= 1

nxσ2 if µ = 1
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37. Consider the queuing chain

(a) Show that if either f(0) = 0 or f(0) + f(1) = 1, the chain is not irreducible

(b) Show that f(0) > 0 and f(0) + f(1) < 1, the chain is irreducible

Solution: Recall that the transition function is

P (x, y) =

{
f(y) if x = 0

f(y − x+ 1) otherwise

for y ≥ x− 1 and y ≥ 0.

(a) If f(0) = 0, then for x ≥ 1, P (x, x − 1) = f(0) = 0 and so P (Xn+1 < Xn) = 0. This implies that x does not
lead to x− 1 for all x ≥ 1, and thus the chain is not irreducible.

If f(0) + f(1) = 1, then P (x, x+ k) = f(k + 1) = 0 for each k ≥ 1, so P (Xn+1 > Xn) = 0. This implies that x
does not leads to x+ 1 for all x ≥ 0, and thus the chain is not irreducible.

(b) Suppose f(0) > 0 and f(0) + f(1) < 1. Then there exists k ≥ 2 such that f(k) > 0.

Let x ≥ 0. Then

� ρ00 ≥ P (0, 0) = f(0) > 0, so 0 leads to 0

� if x > 0, ρx0 ≥ P (x, x− 1)P (x− 1, x− 2) . . . P (1, 0) = f(0)x > 0, so x leads to 0

� With n ≥ x−1
k−1 sufficiently large,

ρ0x ≥ P (0, k)P (k, 2k − 1)P (2k − 1, 3k − 2) . . . P ((n− 1)(k − 1) + 1, n(k − 1) + 1)

× P (n(k − 1) + 1, n(k − 1)) . . . P (x+ 1, x)

= f(k)nf(0)n(k−1)−x+1 > 0

so 0 leads to x

As x is arbitrary, every state leads to every other state, and thus the chain is irreducible.

38. Determine which states of the queuing chain are absorbing, which are recurrent, and which are transient, when the chain
is not irreducible. Consider the following four cases separately:

(a) f(1) = 1

(b) f(0) > 0, f(1) > 0, and f(0) + f(1) = 1

(c) f(0) = 1

(d) f(0) = 0 and f(1) < 1

Solution:

(a) Since f(1) = 1, the transition diagram is then

0 1 2 3 . . .
1

1 1 1

Easy to see that for each x ≥ 1, x is an absorbing state and thus a recurrent state.

Since f(1) = 1, we must have f(0) = 0. So ρ00 = P (0, 0) = f(0) = 0 < 1 and thus 0 is a transient state

By Q37(a), the chain is not irreducible.

(b) The transition diagram is

0 1 2 . . .

f(0)

f(1)

f(0)

f(1)

f(0)

f(1)

f(0)
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As no state satisfies P (x, x) = 1, the chain has no absorbing state.

As {0, 1} is irreducible closed, 0, 1 are recurrent.

For each x ≥ 2, ρxx ≤ 1− ρ{0,1}(x) = 1− P (x, x− 1) . . . P (2, 1) = 1− f(0)x−1 < 1, so x is transient.

Since f(0) + f(1) = 1, by Q37(a) the chain is not irreducible.

(c) The transition diagram is

0 1 2 . . .

1

1 1 1

As P (0, 0) = 1, 0 is absorbing and thus recurrent. For x ≥ 1, ρxx ≤ 1− ρ{0}(x) = 1− P (x, x− 1) . . . P (1, 0) =
1− 1x = 0, so x is transient.

Since f(0) = 1, we have have f(0) + f(1) = 1, by Q37(a) the chain is not irreducible.

(d) The transition function is P (x, y) =

{
f(y) if x = 0

f(y − x+ 1) if x ≥ 1
for y ≥ x ≥ 0

As no state satisfies P (x, x) = 1, the chain has no absorbing state.

As argued in Q37(a), ρxy = 0 for y < x. Furthermore, as f(0) + f(1) < 1, there exists k ≥ 2 with f(k) > 0.
This implies that ρ00 ≤ 1−P (0, 1) = 1−f(1) < 1, and for each x ≥ 0, ρxx ≤ 1−P (x, x+k−1) = 1−f(k) < 1.
So every state is transient.

Since f(0) = 0, by Q37(a) the chain is not irreducible.
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