
MATH4240 Homework 2 Reference Solution

1 Compulsory Part

1. Let Xn, n ≥ 0 be the two-state Markov chain. Find

(a) P ( X1 = 0 | X0 = 0 and X2 = 0 )

(b) P (X1 ̸= X2)

Solution: The transition matrix for such chain is

P =

(
1− p p
q 1− q

)
with p, q ∈ [0, 1].

(a)

P ( X1 = 0 | X0 = 0, X2 = 0 )

=
P (X1 = 0, X0 = 0, X2 = 0)

P (X0 = 0, X2 = 0)

=
P (X1 = 0, X0 = 0, X2 = 0)

P (X1 = 0, X0 = 0, X2 = 0) + P (X1 = 1, X0 = 0, X2 = 0)

=
P (X2 = 0|X1 = 0)P (X1 = 0|X0 = 0)P (X0 = 0)

P (X2 = 0|X1 = 0)P (X1 = 0|X0 = 0)P (X0 = 0) + P (X2 = 0|X1 = 1)P (X1 = 1|X0 = 0)P (X0 = 0)

=
P (0, 0)P (0, 0)π0(0)

P (0, 0)P (0, 0)π0(0) + P (1, 0)P (0, 1)π0(0)

=
(1− p)2

(1− p)2 + pq

Note

Note that (1− p)2 + pq = P 2(0, 0) and (1− p)2 = P (0, 0)2

(b) We first compute π1.

π1 = π0P = (π0(0), π0(1))

(
1− p p
q 1− q

)
= ((1− p)π0(0) + qπ0(1), pπ0(0) + (1− q)π0(1))

Then,

P (X1 ̸= X2)

= P (X2 = 1, X1 = 0) + P (X2 = 0, X1 = 1)

= P (X2 = 1|X1 = 0)P (X1 = 0) + P (X2 = 0|X1 = 1)P (X1 = 1)

= P (0, 1)π1(0) + P (1, 0)π1(1)

= pq + π0(0)p(1− p) + π0(1)q(1− q)

2. Suppose we have two boxes and 2d balls, of which d are black and d are red. Initially, d of the balls are placed in box
1, and the remainder of the balls are placed in box 2. At each trial a ball is chosen at random from each of the boxes,
and the two balls are put back in the opposite boxes. Let X0 denote the number of black balls initially in box 1 and, for
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n ≥ 1, let Xn denote the number of black balls in box 1 after the nth trial. Find the transition function of the Markov
chain Xn , n ≥ 0.

Solution: Note that the state space is S = { 0, 1, . . . , d }. Recall that we want to find P (x, y) = P (Xn+1 = y|Xn = x)

Easy to see that

• if x = 0, then all balls in box 2 are black, and so P (0, y) =

{
1 if y = 1

0 otherwise

• if x = d, then all balls in box 2 are red, and so P (d, y) =

{
1 if y = d− 1

0 otherwise

If x ∈ { 1, . . . , d− 1 }, then box 1 has x black balls and box 2 has d−x black balls. Enumerating all 4 cases of colors
of balls chosen:

• Black from box 1, black from box 2: this happens at probability x
d
d−x
d and gives y = x

• Black from box 1, red from box 2: this happens at probability x
d
x
d and gives y = x− 1

• Red from box 1, black from box 2: this happens at probability d−x
d

d−x
d and gives y = x+ 1

• Red from box 1, red from box 2: this happens at probability d−x
d

x
d and gives y = x

which gives

P (x, y) =


(xd )

2 if y = x− 1

2x
d (1−

x
d ) if y = x

(1− x
d )

2 if y = x+ 1

0 otherwise

for x, y ∈ S .

3. Let the queuing chain be modified by supposing that if there are one or more customers waiting to be served at the start
of a period, there is probability p that one customer will be served during that period and probability 1 − p that no
customers will be served during that period. Find the transition function for this modified queuing chain.

Solution: Similar to the queuing chain, let X0 denote the number of customers present initially, Xn denote the
number of customers present at the end of the nth period for n ≥ 1, ξn denote the number of new customers arriving
during the nth period, and assume that ξ1, ξ2, . . . are independent nonnegative integer-valued and have common
density f with f(m) = 0 for m < 0. This implies that the state space is S = N = {0, 1, . . .}.
If Xn = 0, then Xn+1 = ξn+1 and so P (0, y) = f(y).

If Xn ≥ 1, then Xn+1 =

{
Xn + ξn+1 − 1 with probability p

Xn + ξn+1 with probability 1− p
and so

P (x, y) = P (Xn+1 = y|Xn = x) = pP (ξn+1 = y − x+ 1) + (1− p)P (ξn+1 = y − x)

= pf(y − x+ 1) + (1− p)f(y − x)

on x ≥ 1.

Hence the transition function is P (x, y) =

{
f(y) if x = 0

pf(y − x+ 1) + (1− p)f(y − x) if x ≥ 1
for x, y ∈ S .

Note

We pose no assumption on the arrival rate, so the queue is G/G/1 and not M/G/1.

5. Let Xn, n ≥ 0 be the two-state Markov chain.
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(a) Find P0(T0 = n)

(b) Find P0(T1 = n)

Solution:

(a) Consider first the case n = 1. Then P0(T0 = 1) = P (X1 = 0|X0 = 0) = 1− p.

For n ≥ 2, T0 = n when starting on state 0 if and only if X1 = . . . = Xn−1 = 1 and Xn = 0. This implies that
P0(T0 = n) = P (X1 = . . . = Xn−1 = 1, Xn = 0|X0 = 0) = P (0, 1)P (1, 1)n−2P (1, 0) = pq(1− q)n−2

Combined this gives

P0(T0 = n) =

{
1− p if n = 1

pq(1− p)n−2 otherwise

(b) When starting on state 0, T1 = n if and only if X1 = . . . = Xn−1 = 0 and Xn = 1, so P0(T1 = n) =
P (X1 = . . . = Xn−1 = 0, Xn = 1|X0 = 0) = (1− p)n−1p

10. Consider the Ehrenfest chain with d = 3

(a) Find Px(T0 = n) for x ∈ S and 1 ≤ n ≤ 3

(b) Find P , P 2, and P 3

(c) Let π0 be the uniform distribution π0 = ( 14 ,
1
4 ,

1
4 ,

1
4 ). Find π1, π2 and π3

Solution: By definition, the transition matrix is

P =


0 1 0 0

1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0


(a) Observe that Xn must have the same parity as X0 + n and | X0 − Xn | ≤ n. This implies that P0(T0 =

1), P0(T0 = 3), P1(T0 = 2), P2(T0 = 1), P2(T0 = 3), P3(T0 = 1), P3(T0 = 2) are all zero. The remaining are

• P0(T0 = 2) = P (0, 1)P (1, 0) = 1/3

• P1(T0 = 1) = P (1, 0) = 1/3

• P1(T0 = 3) = P (1, 2)P (2, 1)P (1, 0) = 4/27

• P2(T0 = 2) = P (2, 1)P (1, 0) = 2/9

• P3(T0 = 3) = P (3, 2)P (2, 1)P (1, 0) = 2/9

Note

1 2 3
0 0 1/3 0
1 1/3 0 4/27
2 0 2/9 0
3 0 0 2/9

Ex(T0 = n)

x n

(b) By direct computation,

P 2 =


1/3 0 2/3 0
0 7/9 0 2/9

2/9 0 7/9 0
0 2/3 0 1/3

 , P 3 =


0 7/9 0 2/9

7/27 0 20/27 0
0 20/27 0 7/27
2/9 0 7/9 0


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(c)

π1 = π0P = (
1

12
,
5

12
,
5

12
,
1

12
)

π2 = π1P = (
5

36
,
13

36
,
13

36
,
5

36
)

π3 = π2P = (
13

108
,
41

108
,
41

108
,
13

108
)

19. Consider a Markov chain having state space { 0, 1, . . . , 6 } and transition matrix



0 1 2 3 4 5 6
0 1

2 0 1
8

1
4

1
8 0 0

1 0 0 1 0 0 0 0
2 0 0 0 1 0 0 0
3 0 1 0 0 0 0 0
4 0 0 0 0 1

2 0 1
2

5 0 0 0 0 1
2

1
2 0

6 0 0 0 0 0 1
2

1
2


(a) Determine which states are transient and which states are recurrent

(b) Find ρ0y, y = 0, . . . , 6

Solution:

(a) We first draw the state transition diagram:

0

2

3

1 4

5

6

1/2

1/8

1/4

1/8
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

It is now easy to see that C1 = { 1, 2, 3 } and C2 = { 4, 5, 6 } are irreducible closed, and 0 is transient and
1, 2, 3, 4, 5, 6 are recurrent.

(b) Since neither of 2, 3, 4 leads to 0, ρ00 = P (0, 0) = 1/2.

As C1, C2 are irreducible closed sets of recurrent states, ρ0x = ρC1(0) for each x ∈ C1, and ρ0y = ρC2(0) for
each y ∈ C2. Note that

ρC1
(0) =

∑
y∈C1

P (0, y) + P (0, 0)ρC1
(0) =

3

8
+

1

2
ρC1

(0)

ρC2
(0) =

∑
y∈C2

P (0, y) + P (0, 0)ρC2
(0) =

1

8
+

1

2
ρC2

(0)

solving this we have ρ01 = ρ02 = ρ03 = ρC1
(0) = 3/4 and ρ04 = ρ05 = ρ06 = ρC2

(0) = 1/4.
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20(a). Consider the Markov chain on { 0, 1, . . . , 5 } having transition matrix



0 1 2 3 4 5
0 1

2
1
2 0 0 0 0

1 1
3

2
3 0 0 0 0

2 0 0 1
8 0 7

8 0
3 1

4
1
4 0 0 1

4
1
4

4 0 0 3
4 0 1

4 0
5 0 1

5 0 1
5

1
5

2
5


Determine which states are transient and which are recurrent.

Solution: Let us draw the state transition diagram:

0

1

3

5

4 2

1/2

1/2

2/3

1/3

1/8

7/8

1/4

1/4 1/4

1/4

3/4

1/4

1/5

1/5

1/5

2/5

We can see that C1 = { 0, 1 }, C2 = { 2, 4 } are irreducible closed, and thus 3, 5 are transient and 0, 1, 2, 4 are
recurrent.
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2 Optional Part

4. Consider a probability space (Ω,A, P ) and assume that the various sets mentioned below are all in A.

(a) Show that if Di are disjoint and P (C|Di) = p independently of i, then P ( C |
⋃

i Di ) = p

(b) Show that if Ci are disjoint, then P (
⋃

i Ci | D ) =
∑

i P (Ci|D)

(c) Show that if Ei are disjoint and
⋃

i Ei = Ω, then P (C|D) =
∑

i P (Ei|D)P (C|Ei ∩D)

(d) Show that if Ci are disjoint and P (A|Ci) = P (B|Ci) for all i, then P ( A |
⋃

i Ci ) = P ( B |
⋃

i Ci )

Solution:

(a)

P

(
C

∣∣∣∣∣ ⋃
i

Di

)
=

P (C ∩
⋃

i Di)

P (
⋃

i Di)
=

P (
⋃

i(C ∩Di))

P (
⋃

i Di)
=

∑
i P (C ∩Di)∑

i P (Di)

=

∑
i P (C|Di)P (Di)∑

i P (Di)
=

∑
i pP (Di)∑
i P (Di)

= p

(b)

P

( ⋃
i

Ci

∣∣∣∣∣ D
)

=
P ((

⋃
i Ci) ∩D)

P (D)
=

P (
⋃

i(Ci ∩D))

P (D)
=

∑
i P (Ci ∩D)

P (D)
=
∑
i

P (Ci|D)

(c)

P (C|D) =
P (C ∩D)

P (D)
=

∑
i P (C ∩D ∩ Ei)

P (D)
=
∑
i

P (C ∩D ∩ Ei)

P (D ∩ Ei)

P (D ∩ Ei)

P (D)
=
∑
i

P (C|D ∩ Ei)P (Ei|D)

(d)

P

(
A

∣∣∣∣∣ ⋃
i

Ci

)
=

P (A ∩
⋃

i Ci)

P (
⋃

i Ci)
=

P (
⋃

i(A ∩ Ci))

P (
⋃

i Ci)
=

∑
i P (A|Ci)P (Ci)

P (
⋃

i Ci)

=

∑
i P (B|Ci)P (Ci)

P (
⋃

i Ci)
=

P (
⋃

i(B ∩ Ci))

P (
⋃

i Ci)
=

P (B ∩
⋃

i Ci)

P (
⋃

i Ci)
= P

(
B

∣∣∣∣∣ ⋃
i

Ci

)

6. Let Xn, n ≥ 0 be the Ehrenfest chain and suppose that X0 has a binomial distribution with parameter d and 1/2, i.e.
P (X0 = x) =

(
d
x

)
/2d, x = 0, . . . , d. Find the distribution of X1.

Solution: Recall that the transition function is

P (x, y) =

{
x/d if y = x− 1

1− x/d if y = x+ 1

Noting that P (X1 = y) =
∑

x P (X0 = x)P (x, y),

• On y = 0, P (X1 = 0) = P (1, 0)P (X0 = 1) = 1
d ·
(
d
1

)
2−d = 2−d =

(
d
0

)
2−d

• On y = d, P (X1 = d) = P (d− 1, d)P (X0 = d− 1) = (1− d−1
d ) ·

(
d

d−1

)
2−d = 2−d =

(
d
d

)
2−d

• On 1 ≤ y ≤ d− 1,

P (X1 = y) = P (y − 1, y)P (X0 = y − 1) + P (y + 1, y)P (X0 = y + 1)

= (1− y − 1

d
)

(
d

y − 1

)
2−d +

y + 1

d

(
d

y + 1

)
2−d

= 2−d

(
d− y + 1

d

d!

(y − 1)!(d− y + 1)!
+

y + 1

d

d!

(y + 1)!(d− y − 1)!

)
= 2−d(

(
d− 1

y − 1

)
+

(
d− 1

y

)
) =

(
d

y

)
2−d
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Therefore X1 is still of binomial distribution with parameter d and 1/2.

7. Let Xn, n ≥ 0 be a Markov chain. Show that P (X0 = x0|X1 = x1, . . . , xn = xn) = P (X0 = x0|X1 = x1)

Solution:

P (X0 = x0|X1 = x1, . . . , Xn = xn)

=
P (X0 = x0, X1 = x1, . . . , Xn = xn)

P (X1 = x1, . . . , Xn = xn)

=
P (X0 = x0, X1 = x1)P (x1, x2) . . . P (xn−1, xn)

P (X1 = x1)P (x1, x2) . . . P (xn−1, xn)

=
P (X0 = x0, X1 = x1)

P (X1 = x1)

= P (X0 = x0|X1 = x1)

8. Let x and y be distinct states of a Markov chain having d < ∞ states and supposes that x leads to y. Let n0 be the
smallest positive integer such that Pn0(x, y) > 0 and let x1, . . . , xn0−1 be such that

P (x, x1)P (x1, x2) . . . P (xn0−2, xn0−1)P (xn0−1, y) > 0

(a) Show that x, x1, . . . , xn0−1, y are distinct states

(b) Use (a) to show that n0 ≤ d− 1

(c) Conclude that Px(Ty ≤ d− 1) > 0

Solution:

(a) Denote x0 = x, xn0
= y. Suppose there exist 0 ≤ i < j ≤ n0 such that xi = xj , then

Pn0−(j−i)(x, y) ≥ P (x0, x1) · · ·P (xi−1, xi)P (xj , xj+1) · · ·P (xn0−1, xn0) ≥ P (x0, x1) · · ·P (xn0−1, xn0) > 0

So N = n0 − (j − i) < n0 is a smaller integer such that PN (x, y) > 0. Contradiction arises.

Hence x0 = x, x1, . . . , xn0−1, xn0 = y are all distinct.

(b) By (a), the chain must have n0 + 1 distinct states, so n0 + 1 ≤ d, or n0 ≤ d− 1

(c) By previous part, n0 ≤ d− 1, so Px(Ty ≤ d− 1) ≥ Px(Ty ≤ n0) ≥ P (x, x1)P (x1, x2) · · ·P (xn0−1, y) > 0

Note

The same idea can be applied to prove pumping lemma for e.g. deterministic finite automata.

9. Use (29) to verify the following identities:

(a) Px(Ty ≤ n+ 1) = P (x, y) +
∑

x̸=y P (x, z)Pz(Ty ≤ n), n ≥ 0

(b) ρxy = P (x, y) +
∑

z ̸=y P (x, z)ρzy

Solution:

(a)

Px(Ty ≤ n+ 1) = Px(Ty = 1) +

n∑
k=1

Px(Ty = k + 1) = P (x, y) +

n∑
k=1

∑
z ̸=y

P (x, z)Pz(Ty = k)

= P (x, y) +
∑
z ̸=y

P (x, z)

n∑
k=1

Pz(Ty = k) = P (x, y) +
∑
z ̸=y

Pz(Ty ≤ n)
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Here interchanging the order of summations is justified (in the case of infinite states) as the summands are all
nonnegative.

(b)

ρxy = Px(Ty < ∞) = lim
n→∞

Px(Ty ≤ n+ 1)

= P (x, y) + lim
n→∞

∑
z ̸=y

P (x, z)Pz(Ty ≤ n)

= P (x, y) +
∑
z ̸=y

P (x, z) lim
n→∞

Pz(Ty ≤ n)

= P (x, y) +
∑
z ̸=y

P (x, z)ρz,y

Here interchanging the order of limit and summation is justified (in the case of infinite states) as the summand
P (x, z)Pz(Ty ≤ n) is non-decreasing in n.

11. Consider the genetics chain from Example 7 with d = 3

(a) Find the transition matrices P and P 2

(b) If π0 = (0, 1
2 ,

1
2 , 0), find π1 and π2

(c) Find Px(T{0,3} = n), x ∈ S for n = 1 and n = 2

Solution: The transition function is P (x, y) =
(
2x
y

)(
2(d−x)
d−y

)
/
(
2d
d

)
=
(
2x
y

)(
6−2x
3−y

)
/20 for x, y ∈ S = { 0, 1, . . . , d } =

{ 0, 1, 2, 3 }.
(a) By direct computation,

P =


1 0 0 0
1/5 3/5 1/5 0
0 1/5 3/5 1/5
0 0 0 1

 , P 2 =


1 0 0 0

8/25 2/5 6/25 1/25
1/25 6/25 2/5 8/25
0 0 0 1


(b) By direct computation,

π1 = π0P = (
1

10
,
2

5
,
2

5
,
1

10
)

π2 = π1P = (
9

50
,
8

25
,
8

25
,
9

50
)

(c) As 0, 3 are absorbing states, P0(T{0,3}=1) = P3(T{0,3}=1) = 1 and P0(T{0,3}=2) = P3(T{0,3}=2) = 0.

For x = 1, 2,

• P1(T{0,3} = 1) = P (1, 0) = 1/5

• P1(T{0,3} = 2) = P (1, 1)P (1, 0) + P (1, 2)P (2, 3) = 4/25

• P2(T{0,3} = 1) = P (2, 3) = 1/5

• P2(T{0,3} = 2) = P (2, 1)P (1, 0) + P (2, 2)P (2, 3) = 4/25

12. Consider the Markov chain having state space { 0, 1, 2 } and transition matrix

P =


0 1 2

0 0 1 0
1 1− p 0 p
2 0 1 0


(a) Find P 2

(b) Show that P 4 = P 2
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(c) Find Pn, n ≥ 1

Solution:

(a) By direct computation, P 2 =

1− p 0 p
0 1 0

1− p 0 p



(b) By direct computation, P 4 = (P 2)2 =

1− p 0 p
0 1 0

1− p 0 p

 = P 2

(c) Since (P 2)2 = P 2, we have

• when n = 2k, k ∈ Z+, Pn = P 2k = (P 2)k = P 2 =

1− p 0 p
0 1 0

1− p 0 p


• By direct computation, P 3 =

 0 1 0
1− p 0 p
0 1 0

 = P . So when n = 2k + 1, k ∈ Z+, Pn = P 2kP = P 3 = P

Hence Pn =

{
P 2 if n is even

P if n is odd
for n ≥ 1.

Note

You can also see that P 3 = P by observing that P is 3× 3 matrix and P 2 ̸= I.
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