MATH4240 Homework 2 Reference Solution

1 Compulsory Part

1. Let $X_{n}, n \geq 0$ be the two-state Markov chain. Find
(a) $P\left(X_{1}=0 \mid X_{0}=0\right.$ and $\left.X_{2}=0\right)$
(b) $P\left(X_{1} \neq X_{2}\right)$

Solution: The transition matrix for such chain is

$$
P=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right)
$$

with $p, q \in[0,1]$.
(a)

$$
\begin{aligned}
& P\left(X_{1}=0 \mid X_{0}=0, X_{2}=0\right) \\
= & \frac{P\left(X_{1}=0, X_{0}=0, X_{2}=0\right)}{P\left(X_{0}=0, X_{2}=0\right)} \\
= & \frac{P\left(X_{1}=0, X_{0}=0, X_{2}=0\right)}{P\left(X_{1}=0, X_{0}=0, X_{2}=0\right)+P\left(X_{1}=1, X_{0}=0, X_{2}=0\right)} \\
= & \frac{P\left(X_{2}=0 \mid X_{1}=0\right) P\left(X_{1}=0 \mid X_{0}=0\right) P\left(X_{0}=0\right)}{P\left(X_{2}=0 \mid X_{1}=0\right) P\left(X_{1}=0 \mid X_{0}=0\right) P\left(X_{0}=0\right)+P\left(X_{2}=0 \mid X_{1}=1\right) P\left(X_{1}=1 \mid X_{0}=0\right) P\left(X_{0}=0\right)} \\
= & \frac{P(0,0) P(0,0) \pi_{0}(0)}{P(0,0) P(0,0) \pi_{0}(0)+P(1,0) P(0,1) \pi_{0}(0)} \\
= & \frac{(1-p)^{2}}{(1-p)^{2}+p q}
\end{aligned}
$$

Note

Note that $(1-p)^{2}+p q=P^{2}(0,0)$ and $(1-p)^{2}=P(0,0)^{2}$
(b) We first compute π_{1}.

$$
\pi_{1}=\pi_{0} P=\left(\pi_{0}(0), \pi_{0}(1)\right)\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right)=\left((1-p) \pi_{0}(0)+q \pi_{0}(1), p \pi_{0}(0)+(1-q) \pi_{0}(1)\right)
$$

Then,

$$
\begin{aligned}
& P\left(X_{1} \neq X_{2}\right) \\
= & P\left(X_{2}=1, X_{1}=0\right)+P\left(X_{2}=0, X_{1}=1\right) \\
= & P\left(X_{2}=1 \mid X_{1}=0\right) P\left(X_{1}=0\right)+P\left(X_{2}=0 \mid X_{1}=1\right) P\left(X_{1}=1\right) \\
= & P(0,1) \pi_{1}(0)+P(1,0) \pi_{1}(1) \\
= & p q+\pi_{0}(0) p(1-p)+\pi_{0}(1) q(1-q)
\end{aligned}
$$

2. Suppose we have two boxes and $2 d$ balls, of which d are black and d are red. Initially, d of the balls are placed in box 1 , and the remainder of the balls are placed in box 2. At each trial a ball is chosen at random from each of the boxes, and the two balls are put back in the opposite boxes. Let X_{0} denote the number of black balls initially in box 1 and, for
$n \geq 1$, let X_{n} denote the number of black balls in box 1 after the $n t h$ trial. Find the transition function of the Markov chain $X_{n}, n \geq 0$.

Solution: Note that the state space is $\mathscr{S}=\{0,1, \ldots, d\}$. Recall that we want to find $P(x, y)=P\left(X_{n+1}=y \mid X_{n}=x\right)$ Easy to see that

- if $x=0$, then all balls in box 2 are black, and so $P(0, y)= \begin{cases}1 & \text { if } y=1 \\ 0 & \text { otherwise }\end{cases}$
- if $x=d$, then all balls in box 2 are red, and so $P(d, y)= \begin{cases}1 & \text { if } y=d-1 \\ 0 & \text { otherwise }\end{cases}$

If $x \in\{1, \ldots, d-1\}$, then box 1 has x black balls and box 2 has $d-x$ black balls. Enumerating all 4 cases of colors of balls chosen:

- Black from box 1, black from box 2: this happens at probability $\frac{x}{d} \frac{d-x}{d}$ and gives $y=x$
- Black from box 1, red from box 2: this happens at probability $\frac{x}{d} \frac{x}{d}$ and gives $y=x-1$
- Red from box 1, black from box 2: this happens at probability $\frac{d-x}{d} \frac{d-x}{d}$ and gives $y=x+1$
- Red from box 1, red from box 2: this happens at probability $\frac{d-x}{d} \frac{x}{d}$ and gives $y=x$
which gives

$$
P(x, y)= \begin{cases}\left(\frac{x}{d}\right)^{2} & \text { if } y=x-1 \\ 2 \frac{x}{d}\left(1-\frac{x}{d}\right) & \text { if } y=x \\ \left(1-\frac{x}{d}\right)^{2} & \text { if } y=x+1 \\ 0 & \text { otherwise }\end{cases}
$$

for $x, y \in \mathscr{S}$.
3. Let the queuing chain be modified by supposing that if there are one or more customers waiting to be served at the start of a period, there is probability p that one customer will be served during that period and probability $1-p$ that no customers will be served during that period. Find the transition function for this modified queuing chain.

Solution: Similar to the queuing chain, let X_{0} denote the number of customers present initially, X_{n} denote the number of customers present at the end of the nth period for $n \geq 1, \xi_{n}$ denote the number of new customers arriving during the nth period, and assume that ξ_{1}, ξ_{2}, \ldots are independent nonnegative integer-valued and have common density f with $f(m)=0$ for $m<0$. This implies that the state space is $\mathscr{S}=\mathbb{N}=\{0,1, \ldots\}$.
If $X_{n}=0$, then $X_{n+1}=\xi_{n+1}$ and so $P(0, y)=f(y)$.
If $X_{n} \geq 1$, then $X_{n+1}=\left\{\begin{array}{ll}X_{n}+\xi_{n+1}-1 & \text { with probability } p \\ X_{n}+\xi_{n+1} & \text { with probability } 1-p\end{array}\right.$ and so

$$
\begin{aligned}
P(x, y)=P\left(X_{n+1}=y \mid X_{n}=x\right) & =p P\left(\xi_{n+1}=y-x+1\right)+(1-p) P\left(\xi_{n+1}=y-x\right) \\
& =p f(y-x+1)+(1-p) f(y-x)
\end{aligned}
$$

on $x \geq 1$.
Hence the transition function is $P(x, y)=\left\{\begin{array}{ll}f(y) & \text { if } x=0 \\ p f(y-x+1)+(1-p) f(y-x) & \text { if } x \geq 1\end{array}\right.$ for $x, y \in \mathscr{S}$.

Note

We pose no assumption on the arrival rate, so the queue is $\mathrm{G} / \mathrm{G} / 1$ and not $\mathrm{M} / \mathrm{G} / 1$.
5. Let $X_{n}, n \geq 0$ be the two-state Markov chain.
(a) Find $P_{0}\left(T_{0}=n\right)$
(b) Find $P_{0}\left(T_{1}=n\right)$

Solution:

(a) Consider first the case $n=1$. Then $P_{0}\left(T_{0}=1\right)=P\left(X_{1}=0 \mid X_{0}=0\right)=1-p$.

For $n \geq 2, T_{0}=n$ when starting on state 0 if and only if $X_{1}=\ldots=X_{n-1}=1$ and $X_{n}=0$. This implies that $P_{0}\left(T_{0}=n\right)=P\left(X_{1}=\ldots=X_{n-1}=1, X_{n}=0 \mid X_{0}=0\right)=P(0,1) P(1,1)^{n-2} P(1,0)=p q(1-q)^{n-2}$
Combined this gives

$$
P_{0}\left(T_{0}=n\right)= \begin{cases}1-p & \text { if } n=1 \\ p q(1-p)^{n-2} & \text { otherwise }\end{cases}
$$

(b) When starting on state $0, T_{1}=n$ if and only if $X_{1}=\ldots=X_{n-1}=0$ and $X_{n}=1$, so $P_{0}\left(T_{1}=n\right)=$ $P\left(X_{1}=\ldots=X_{n-1}=0, X_{n}=1 \mid X_{0}=0\right)=(1-p)^{n-1} p$
10. Consider the Ehrenfest chain with $d=3$
(a) Find $P_{x}\left(T_{0}=n\right)$ for $x \in \mathscr{S}$ and $1 \leq n \leq 3$
(b) Find P, P^{2}, and P^{3}
(c) Let π_{0} be the uniform distribution $\pi_{0}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$. Find π_{1}, π_{2} and π_{3}

Solution: By definition, the transition matrix is

$$
P=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 / 3 & 0 & 2 / 3 & 0 \\
0 & 2 / 3 & 0 & 1 / 3 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

(a) Observe that X_{n} must have the same parity as $X_{0}+n$ and $\left|X_{0}-X_{n}\right| \leq n$. This implies that $P_{0}\left(T_{0}=\right.$ 1), $P_{0}\left(T_{0}=3\right), P_{1}\left(T_{0}=2\right), P_{2}\left(T_{0}=1\right), P_{2}\left(T_{0}=3\right), P_{3}\left(T_{0}=1\right), P_{3}\left(T_{0}=2\right)$ are all zero. The remaining are

- $P_{0}\left(T_{0}=2\right)=P(0,1) P(1,0)=1 / 3$
- $P_{1}\left(T_{0}=1\right)=P(1,0)=1 / 3$
- $P_{1}\left(T_{0}=3\right)=P(1,2) P(2,1) P(1,0)=4 / 27$
- $P_{2}\left(T_{0}=2\right)=P(2,1) P(1,0)=2 / 9$
- $P_{3}\left(T_{0}=3\right)=P(3,2) P(2,1) P(1,0)=2 / 9$

Note

$E_{x}\left(T_{0}=n\right)$			
xn^{n}	1	2	3
0	0	$1 / 3$	0
1	$1 / 3$	0	$4 / 27$
2	0	$2 / 9$	0
3	0	0	$2 / 9$

(b) By direct computation,

$$
P^{2}=\left(\begin{array}{cccc}
1 / 3 & 0 & 2 / 3 & 0 \\
0 & 7 / 9 & 0 & 2 / 9 \\
2 / 9 & 0 & 7 / 9 & 0 \\
0 & 2 / 3 & 0 & 1 / 3
\end{array}\right), \quad P^{3}=\left(\begin{array}{cccc}
0 & 7 / 9 & 0 & 2 / 9 \\
7 / 27 & 0 & 20 / 27 & 0 \\
0 & 20 / 27 & 0 & 7 / 27 \\
2 / 9 & 0 & 7 / 9 & 0
\end{array}\right)
$$

(c)

$$
\begin{aligned}
& \pi_{1}=\pi_{0} P=\left(\frac{1}{12}, \frac{5}{12}, \frac{5}{12}, \frac{1}{12}\right) \\
& \pi_{2}=\pi_{1} P=\left(\frac{5}{36}, \frac{13}{36}, \frac{13}{36}, \frac{5}{36}\right) \\
& \pi_{3}=\pi_{2} P=\left(\frac{13}{108}, \frac{41}{108}, \frac{41}{108}, \frac{13}{108}\right)
\end{aligned}
$$

19. Consider a Markov chain having state space $\{0,1, \ldots, 6\}$ and transition matrix

(a) Determine which states are transient and which states are recurrent
(b) Find $\rho_{0 y}, y=0, \ldots, 6$

Solution:

(a) We first draw the state transition diagram:

It is now easy to see that $C_{1}=\{1,2,3\}$ and $C_{2}=\{4,5,6\}$ are irreducible closed, and 0 is transient and $1,2,3,4,5,6$ are recurrent.
(b) Since neither of $2,3,4$ leads to $0, \rho_{00}=P(0,0)=1 / 2$.

As C_{1}, C_{2} are irreducible closed sets of recurrent states, $\rho_{0 x}=\rho_{C_{1}}(0)$ for each $x \in C_{1}$, and $\rho_{0 y}=\rho_{C_{2}}(0)$ for each $y \in C_{2}$. Note that

$$
\begin{aligned}
& \rho_{C_{1}}(0)=\sum_{y \in C_{1}} P(0, y)+P(0,0) \rho_{C_{1}}(0)=\frac{3}{8}+\frac{1}{2} \rho_{C_{1}}(0) \\
& \rho_{C_{2}}(0)=\sum_{y \in C_{2}} P(0, y)+P(0,0) \rho_{C_{2}}(0)=\frac{1}{8}+\frac{1}{2} \rho_{C_{2}}(0)
\end{aligned}
$$

solving this we have $\rho_{01}=\rho_{02}=\rho_{03}=\rho_{C_{1}}(0)=3 / 4$ and $\rho_{04}=\rho_{05}=\rho_{06}=\rho_{C_{2}}(0)=1 / 4$.

20(a). Consider the Markov chain on $\{0,1, \ldots, 5\}$ having transition matrix
0
0
1
2
3
4
4
5 $\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ \frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{8} & 0 & \frac{7}{8} & 0 \\ \frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & \frac{3}{4} & 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{5} & 0 & \frac{1}{5} & \frac{1}{5} & \frac{2}{5}\end{array}\right]$

Determine which states are transient and which are recurrent.

Solution: Let us draw the state transition diagram:

We can see that $C_{1}=\{0,1\}, C_{2}=\{2,4\}$ are irreducible closed, and thus 3,5 are transient and $0,1,2,4$ are recurrent.

2 Optional Part

4. Consider a probability space (Ω, \mathcal{A}, P) and assume that the various sets mentioned below are all in \mathcal{A}.
(a) Show that if D_{i} are disjoint and $P\left(C \mid D_{i}\right)=p$ independently of i, then $P\left(C \mid \bigcup_{i} D_{i}\right)=p$
(b) Show that if C_{i} are disjoint, then $P\left(\bigcup_{i} C_{i} \mid D\right)=\sum_{i} P\left(C_{i} \mid D\right)$
(c) Show that if E_{i} are disjoint and $\bigcup_{i} E_{i}=\Omega$, then $P(C \mid D)=\sum_{i} P\left(E_{i} \mid D\right) P\left(C \mid E_{i} \cap D\right)$
(d) Show that if C_{i} are disjoint and $P\left(A \mid C_{i}\right)=P\left(B \mid C_{i}\right)$ for all i, then $P\left(A \mid \bigcup_{i} C_{i}\right)=P\left(B \mid \bigcup_{i} C_{i}\right)$

Solution:

(a)

$$
\begin{aligned}
P\left(C \mid \bigcup_{i} D_{i}\right) & =\frac{P\left(C \cap \bigcup_{i} D_{i}\right)}{P\left(\bigcup_{i} D_{i}\right)}=\frac{P\left(\bigcup_{i}\left(C \cap D_{i}\right)\right)}{P\left(\bigcup_{i} D_{i}\right)}=\frac{\sum_{i} P\left(C \cap D_{i}\right)}{\sum_{i} P\left(D_{i}\right)} \\
& =\frac{\sum_{i} P\left(C \mid D_{i}\right) P\left(D_{i}\right)}{\sum_{i} P\left(D_{i}\right)}=\frac{\sum_{i} p P\left(D_{i}\right)}{\sum_{i} P\left(D_{i}\right)}=p
\end{aligned}
$$

(b)

$$
P\left(\bigcup_{i} C_{i} \mid D\right)=\frac{P\left(\left(\bigcup_{i} C_{i}\right) \cap D\right)}{P(D)}=\frac{P\left(\bigcup_{i}\left(C_{i} \cap D\right)\right)}{P(D)}=\frac{\sum_{i} P\left(C_{i} \cap D\right)}{P(D)}=\sum_{i} P\left(C_{i} \mid D\right)
$$

(c)

$$
P(C \mid D)=\frac{P(C \cap D)}{P(D)}=\frac{\sum_{i} P\left(C \cap D \cap E_{i}\right)}{P(D)}=\sum_{i} \frac{P\left(C \cap D \cap E_{i}\right)}{P\left(D \cap E_{i}\right)} \frac{P\left(D \cap E_{i}\right)}{P(D)}=\sum_{i} P\left(C \mid D \cap E_{i}\right) P\left(E_{i} \mid D\right)
$$

(d)

$$
\begin{aligned}
P\left(A \mid \bigcup_{i} C_{i}\right) & =\frac{P\left(A \cap \bigcup_{i} C_{i}\right)}{P\left(\bigcup_{i} C_{i}\right)}=\frac{P\left(\bigcup_{i}\left(A \cap C_{i}\right)\right)}{P\left(\bigcup_{i} C_{i}\right)}=\frac{\sum_{i} P\left(A \mid C_{i}\right) P\left(C_{i}\right)}{P\left(\bigcup_{i} C_{i}\right)} \\
& =\frac{\sum_{i} P\left(B \mid C_{i}\right) P\left(C_{i}\right)}{P\left(\bigcup_{i} C_{i}\right)}=\frac{P\left(\bigcup_{i}\left(B \cap C_{i}\right)\right)}{P\left(\bigcup_{i} C_{i}\right)}=\frac{P\left(B \cap \bigcup_{i} C_{i}\right)}{P\left(\bigcup_{i} C_{i}\right)}=P\left(B \mid \bigcup_{i} C_{i}\right)
\end{aligned}
$$

6. Let $X_{n}, n \geq 0$ be the Ehrenfest chain and suppose that X_{0} has a binomial distribution with parameter d and $1 / 2$, i.e. $P\left(X_{0}=x\right)=\binom{d}{x} / 2^{d}, x=0, \ldots, d$. Find the distribution of X_{1}.

Solution: Recall that the transition function is

$$
P(x, y)= \begin{cases}x / d & \text { if } y=x-1 \\ 1-x / d & \text { if } y=x+1\end{cases}
$$

Noting that $P\left(X_{1}=y\right)=\sum_{x} P\left(X_{0}=x\right) P(x, y)$,

- On $y=0, P\left(X_{1}=0\right)=P(1,0) P\left(X_{0}=1\right)=\frac{1}{d} \cdot\binom{d}{1} 2^{-d}=2^{-d}=\binom{d}{0} 2^{-d}$
- On $y=d, P\left(X_{1}=d\right)=P(d-1, d) P\left(X_{0}=d-1\right)=\left(1-\frac{d-1}{d}\right) \cdot\binom{d}{d-1} 2^{-d}=2^{-d}=\binom{d}{d} 2^{-d}$
- On $1 \leq y \leq d-1$,

$$
\begin{aligned}
P\left(X_{1}=y\right) & =P(y-1, y) P\left(X_{0}=y-1\right)+P(y+1, y) P\left(X_{0}=y+1\right) \\
& =\left(1-\frac{y-1}{d}\right)\binom{d}{y-1} 2^{-d}+\frac{y+1}{d}\binom{d}{y+1} 2^{-d} \\
& =2^{-d}\left(\frac{d-y+1}{d} \frac{d!}{(y-1)!(d-y+1)!}+\frac{y+1}{d} \frac{d!}{(y+1)!(d-y-1)!}\right) \\
& =2^{-d}\left(\binom{d-1}{y-1}+\binom{d-1}{y}\right)=\binom{d}{y} 2^{-d}
\end{aligned}
$$

Therefore X_{1} is still of binomial distribution with parameter d and $1 / 2$.
7. Let $X_{n}, n \geq 0$ be a Markov chain. Show that $P\left(X_{0}=x_{0} \mid X_{1}=x_{1}, \ldots, x_{n}=x_{n}\right)=P\left(X_{0}=x_{0} \mid X_{1}=x_{1}\right)$

Solution:

$$
\begin{aligned}
& P\left(X_{0}=x_{0} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \\
= & \frac{P\left(X_{0}=x_{0}, X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)}{P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)} \\
= & \frac{P\left(X_{0}=x_{0}, X_{1}=x_{1}\right) P\left(x_{1}, x_{2}\right) \ldots P\left(x_{n-1}, x_{n}\right)}{P\left(X_{1}=x_{1}\right) P\left(x_{1}, x_{2}\right) \ldots P\left(x_{n-1}, x_{n}\right)} \\
= & \frac{P\left(X_{0}=x_{0}, X_{1}=x_{1}\right)}{P\left(X_{1}=x_{1}\right)} \\
= & P\left(X_{0}=x_{0} \mid X_{1}=x_{1}\right)
\end{aligned}
$$

8. Let x and y be distinct states of a Markov chain having $d<\infty$ states and supposes that x leads to y. Let n_{0} be the smallest positive integer such that $P^{n_{0}}(x, y)>0$ and let $x_{1}, \ldots, x_{n_{0}-1}$ be such that

$$
P\left(x, x_{1}\right) P\left(x_{1}, x_{2}\right) \ldots P\left(x_{n_{0}-2}, x_{n_{0}-1}\right) P\left(x_{n_{0}-1}, y\right)>0
$$

(a) Show that $x, x_{1}, \ldots, x_{n_{0}-1}, y$ are distinct states
(b) Use (a) to show that $n_{0} \leq d-1$
(c) Conclude that $P_{x}\left(T_{y} \leq d-1\right)>0$

Solution:

(a) Denote $x_{0}=x, x_{n_{0}}=y$. Suppose there exist $0 \leq i<j \leq n_{0}$ such that $x_{i}=x_{j}$, then

$$
P^{n_{0}-(j-i)}(x, y) \geq P\left(x_{0}, x_{1}\right) \cdots P\left(x_{i-1}, x_{i}\right) P\left(x_{j}, x_{j+1}\right) \cdots P\left(x_{n_{0}-1}, x_{n_{0}}\right) \geq P\left(x_{0}, x_{1}\right) \cdots P\left(x_{n_{0}-1}, x_{n_{0}}\right)>0
$$

So $N=n_{0}-(j-i)<n_{0}$ is a smaller integer such that $P^{N}(x, y)>0$. Contradiction arises.
Hence $x_{0}=x, x_{1}, \ldots, x_{n_{0}-1}, x_{n_{0}}=y$ are all distinct.
(b) By (a), the chain must have $n_{0}+1$ distinct states, so $n_{0}+1 \leq d$, or $n_{0} \leq d-1$
(c) By previous part, $n_{0} \leq d-1$, so $P_{x}\left(T_{y} \leq d-1\right) \geq P_{x}\left(T_{y} \leq n_{0}\right) \geq P\left(x, x_{1}\right) P\left(x_{1}, x_{2}\right) \cdots P\left(x_{n_{0}-1}, y\right)>0$

Note

The same idea can be applied to prove pumping lemma for e.g. deterministic finite automata.
9. Use (29) to verify the following identities:
(a) $P_{x}\left(T_{y} \leq n+1\right)=P(x, y)+\sum_{x \neq y} P(x, z) P_{z}\left(T_{y} \leq n\right), n \geq 0$
(b) $\rho_{x y}=P(x, y)+\sum_{z \neq y} P(x, z) \rho_{z y}$

Solution:

(a)

$$
\begin{aligned}
P_{x}\left(T_{y} \leq n+1\right) & =P_{x}\left(T_{y}=1\right)+\sum_{k=1}^{n} P_{x}\left(T_{y}=k+1\right)=P(x, y)+\sum_{k=1}^{n} \sum_{z \neq y} P(x, z) P_{z}\left(T_{y}=k\right) \\
& =P(x, y)+\sum_{z \neq y} P(x, z) \sum_{k=1}^{n} P_{z}\left(T_{y}=k\right)=P(x, y)+\sum_{z \neq y} P_{z}\left(T_{y} \leq n\right)
\end{aligned}
$$

Here interchanging the order of summations is justified (in the case of infinite states) as the summands are all nonnegative.
(b)

$$
\begin{aligned}
\rho_{x y}=P_{x}\left(T_{y}<\infty\right) & =\lim _{n \rightarrow \infty} P_{x}\left(T_{y} \leq n+1\right) \\
& =P(x, y)+\lim _{n \rightarrow \infty} \sum_{z \neq y} P(x, z) P_{z}\left(T_{y} \leq n\right) \\
& =P(x, y)+\sum_{z \neq y} P(x, z) \lim _{n \rightarrow \infty} P_{z}\left(T_{y} \leq n\right) \\
& =P(x, y)+\sum_{z \neq y} P(x, z) \rho_{z, y}
\end{aligned}
$$

Here interchanging the order of limit and summation is justified (in the case of infinite states) as the summand $P(x, z) P_{z}\left(T_{y} \leq n\right)$ is non-decreasing in n.
11. Consider the genetics chain from Example 7 with $d=3$
(a) Find the transition matrices P and P^{2}
(b) If $\pi_{0}=\left(0, \frac{1}{2}, \frac{1}{2}, 0\right)$, find π_{1} and π_{2}
(c) Find $P_{x}\left(T_{\{0,3\}}=n\right), x \in \mathscr{S}$ for $n=1$ and $n=2$

Solution: The transition function is $P(x, y)=\binom{2 x}{y}\binom{2(d-x)}{d-y} /\binom{2 d}{d}=\binom{2 x}{y}\binom{6-2 x}{3-y} / 20$ for $x, y \in \mathscr{S}=\{0,1, \ldots, d\}=$ $\{0,1,2,3\}$.
(a) By direct computation,

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 5 & 3 / 5 & 1 / 5 & 0 \\
0 & 1 / 5 & 3 / 5 & 1 / 5 \\
0 & 0 & 0 & 1
\end{array}\right), \quad P^{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
8 / 25 & 2 / 5 & 6 / 25 & 1 / 25 \\
1 / 25 & 6 / 25 & 2 / 5 & 8 / 25 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(b) By direct computation,

$$
\begin{aligned}
& \pi_{1}=\pi_{0} P=\left(\frac{1}{10}, \frac{2}{5}, \frac{2}{5}, \frac{1}{10}\right) \\
& \pi_{2}=\pi_{1} P=\left(\frac{9}{50}, \frac{8}{25}, \frac{8}{25}, \frac{9}{50}\right)
\end{aligned}
$$

(c) As 0,3 are absorbing states, $P_{0}\left(T_{\{0,3\}=1}\right)=P_{3}\left(T_{\{0,3\}=1}\right)=1$ and $P_{0}\left(T_{\{0,3\}=2}\right)=P_{3}\left(T_{\{0,3\}=2}\right)=0$.

For $x=1,2$,

- $P_{1}\left(T_{\{0,3\}}=1\right)=P(1,0)=1 / 5$
- $P_{1}\left(T_{\{0,3\}}=2\right)=P(1,1) P(1,0)+P(1,2) P(2,3)=4 / 25$
- $P_{2}\left(T_{\{0,3\}}=1\right)=P(2,3)=1 / 5$
- $P_{2}\left(T_{\{0,3\}}=2\right)=P(2,1) P(1,0)+P(2,2) P(2,3)=4 / 25$

12. Consider the Markov chain having state space $\{0,1,2\}$ and transition matrix

$$
\left.P=\begin{array}{c}
0 \\
1 \\
2
\end{array} \begin{array}{ccc}
0 & 1 & 2 \\
0 & 1 & 0 \\
1-p & 0 & p \\
0 & 1 & 0
\end{array}\right]
$$

(a) Find P^{2}
(b) Show that $P^{4}=P^{2}$
(c) Find $P^{n}, n \geq 1$

Solution:

(a) By direct computation, $P^{2}=\left(\begin{array}{ccc}1-p & 0 & p \\ 0 & 1 & 0 \\ 1-p & 0 & p\end{array}\right)$
(b) By direct computation, $P^{4}=\left(P^{2}\right)^{2}=\left(\begin{array}{ccc}1-p & 0 & p \\ 0 & 1 & 0 \\ 1-p & 0 & p\end{array}\right)=P^{2}$
(c) Since $\left(P^{2}\right)^{2}=P^{2}$, we have

- when $n=2 k, k \in \mathbb{Z}^{+}, P^{n}=P^{2 k}=\left(P^{2}\right)^{k}=P^{2}=\left(\begin{array}{ccc}1-p & 0 & p \\ 0 & 1 & 0 \\ 1-p & 0 & p\end{array}\right)$
- By direct computation, $P^{3}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1-p & 0 & p \\ 0 & 1 & 0\end{array}\right)=P$. So when $n=2 k+1, k \in \mathbb{Z}^{+}, P^{n}=P^{2 k} P=P^{3}=P$

Hence $P^{n}=\left\{\begin{array}{ll}P^{2} & \text { if } n \text { is even } \\ P & \text { if } n \text { is odd }\end{array}\right.$ for $n \geq 1$.

Note

You can also see that $P^{3}=P$ by observing that P is 3×3 matrix and $P^{2} \neq I$.

