MATH4240 Homework 1 Reference Solution

1. Let X and Y have the joint probability density function given by

$$
f_{X, Y}(x, y)= \begin{cases}6(1-y) & \text { if } 0 \leq x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal density function $f_{X}(x)$ for X
(b) Find the conditional density function of X given $Y=y$
(c) Are X and Y independent? Explain why or why not
(d) Find $P\left(\left.Y \geq \frac{3}{4} \right\rvert\, X=\frac{1}{2}\right)$
(e) Find $\mathrm{E}(X-3 Y)$

Solution:

(a)

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{-\infty}^{\infty} 6(1-y) \chi_{0 \leq x \leq y \leq 1} \mathrm{~d} y \\
& =\chi_{0 \leq x \leq 1} \int_{-\infty}^{\infty} 6(1-y) \chi_{x \leq y \leq 1} \mathrm{~d} y=\chi_{0 \leq x \leq 1} \int_{x}^{1} 6(1-y) \mathrm{d} y \\
& =3(1-x)^{2} \chi_{0 \leq x \leq 1}
\end{aligned}
$$

(b) To find the conditional density of X given $Y=y$, we first compute the marginal density f_{Y} for Y. With the same approach as the last part,

$$
f_{Y}(y)=\int_{-\infty}^{\infty} 6(1-y) \chi_{0 \leq x \leq y \leq 1} \mathrm{~d} x=\chi_{0 \leq y \leq 1} \int_{0}^{y} 6(1-y) \mathrm{d} x=6 y(1-y) \chi_{0 \leq y \leq 1}
$$

So the conditional density of X given $Y=y$ is

$$
f_{X \mid Y}(x \mid y)=f_{X, Y}(x, y) / f_{Y}(y)=\frac{6(1-y) \chi_{0 \leq x \leq y \leq 1}}{6 y(1-y) \chi_{0 \leq y \leq 1}}=\frac{1}{y} \chi_{0 \leq x \leq y \leq 1}
$$

(c) To check if X and Y are independent, we compare the marginal density f_{X} and the conditional density $f_{X \mid Y}$ given $Y=y$ and check if they are equal on all x, y with $f_{Y}(y)>0$.
By the previous parts, $f_{X}(x)=3(1-x)^{2} \chi_{0 \leq x \leq 1}$ and $f_{X \mid Y}(x \mid y)=\frac{1}{y} \chi_{0 \leq x \leq y}$ which are two distinct functions, so X and Y are not independent.
(d)

$$
\begin{aligned}
P\left(\left.Y \geq \frac{3}{4} \right\rvert\, X=\frac{1}{2}\right) & =\int_{-\infty}^{\infty} \chi_{y \geq \frac{3}{4}} f_{Y \mid X}\left(y \left\lvert\, x=\frac{1}{2}\right.\right) \mathrm{d} y=\int_{-\infty}^{\infty} \chi_{y \geq \frac{3}{4}} \frac{f_{X, Y}\left(\frac{1}{2}, y\right)}{f_{X}\left(\frac{1}{2}\right)} \mathrm{d} y=\int_{\frac{3}{4}}^{\infty} \frac{6(1-y) \chi_{\frac{1}{2} \leq y \leq 1}}{\frac{3}{4}} \mathrm{~d} y \\
& =\int_{\frac{3}{4}}^{1} 8(1-y) \mathrm{d} y=\frac{1}{4}
\end{aligned}
$$

(e) $\mathrm{E}(X-3 Y)=\mathrm{E}(X)-3 \mathrm{E}(Y)=\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x-3 \int_{-\infty}^{\infty} y f_{Y}(y) \mathrm{d} y=\int_{0}^{1} x \cdot 3(1-x)^{2} \mathrm{~d} x-3 \int_{0}^{1} y \cdot 6 y(1-y) \mathrm{d} y=$ $\frac{1}{4}-3 \cdot \frac{1}{2}=-\frac{5}{4}$
Alternatively, $\mathrm{E}(X-3 Y)=\int_{0 \leq x \leq y \leq 1}(x-3 y) 6(1-y) \mathrm{d} x \mathrm{~d} y=-\frac{5}{4}$
2. Consider two independent random variables X and Y. The pdf of X is given as

$$
P(X=i)=\frac{1}{3} \quad \text { for } i=-1,0,1
$$

and the pdf of Y is given as

$$
f_{Y}(y)= \begin{cases}1 & \text { if } 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Define $Z=X+Y$
(a) Compute $P\left(\left.Z \leq \frac{1}{2} \right\rvert\, X=0\right)$
(b) Find the pdf of Z

Solution:

(a) $P\left(\left.Z \leq \frac{1}{2} \right\rvert\, X=0\right)=P\left(\left.X+Y \leq \frac{1}{2} \right\rvert\, X=0\right)=P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=0\right)=P\left(Y \leq \frac{1}{2}\right)=\int_{-\infty}^{\infty} \chi_{y \leq \frac{1}{2}} f_{Y}(y) \mathrm{d} y=\frac{1}{2}$ due to the independence
(b) We first consider the cdf of Z. The cdf of Z is

$$
\begin{aligned}
F_{Z}(z)= & P(Z \leq z)=P(X+Y \leq z) \\
= & P(X+Y \leq z \mid X=-1) P(X=-1)+P(X+Y \leq z \mid X=0) P(X=0) \\
& \quad+P(X+Y \leq z \mid X=1) P(X=1) \\
= & \frac{1}{3}(P(Y \leq z+1)+P(Y \leq z)+P(Y \leq z-1))=\frac{1}{3}\left(F_{Y}(z+1)+F_{Y}(z)+F_{Y}(z-1)\right)
\end{aligned}
$$

this means that the pdf of Z is

$$
\begin{aligned}
f_{Z}(z) & =\frac{1}{3}\left(f_{Y}(z+1)+f_{Y}(z)+f_{Y}(z-1)\right)=\frac{1}{3}\left(\chi_{0 \leq z+1 \leq 1}+\chi_{0 \leq z \leq 1}+\chi_{0 \leq z-1 \leq 1}\right) \\
& =\frac{1}{3} \chi_{-1 \leq z \leq 2}= \begin{cases}\frac{1}{3} & \text { if }-1 \leq z \leq 2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Note

Technically, the pdf from this computation is $f_{Z}(z)=\left\{\begin{array}{ll}\frac{1}{3} & \text { if } z \in[-1,0) \cup(0,1) \cup(1,2] \\ \frac{2}{3} & \text { if } z \in\{0,1\} \\ 0 & \text { otherwise }\end{array}\right.$. However, pdf is only determined up to a set of measure zero, so in this view this is the same as the answer given above.

