Chapter 3:
Markov Jump Process



§3.1 Introduction
e Jump process.

Recall: a MC (discrete-time stochastic process
with the Markovian property):

X(n) €S, n=0,1,2--.

S: finite or countably infinite,
eg. S={0,1,...,N} (N < o0).

state

240/323



Consider a continuous-time stochastic process:
X(t)eS, 0<t<oo,
S: finite or countably infinite.
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T, Ti o ‘“timet
— T1, Ty, - the waiting time to jump (random).

— X(m), X(7),---: where to jump (random).
— Always assume: lim,_,., 7, = 0o (No blow-up!)
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e Probability structure.

Def.: x € S is absorbing if

“X(t) = x for some t > 0"="X(s) =x, Vs > t".
State

a’ == -:h—¢"

N
, )
Time
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Given a non-absorbing state X(0) = x € S, we
need to know two things:

(i) Fx(t), t > 0: the distribution of the waiting
time 71. Note:

F.i(t) = Py(m1 < t).

(ii) Q. the transition prob to jump from a state x
to another state y(# x):

(;)x3< — (), :EE::: (:;{x)/ = 1.
yeS

1, for x =y,

(If x is absorbing, Q., = d,, = {0, otherwice.

)
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For non-absorbing x, we assume:
Px(Tl < tax(Tl) = y) = PX(Tl < t)Qxya

71 (the waiting time to jump)
and
X(11) (jump to where)
are independent!
state

4
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Similar to the MC (discrete-time), our concern is
to determine the transition function:

Py (t) = P(X(t) = y|X(0) = x) = P(X(t) = y),

I.e., the prob that the process starting at x will be
at y at time t > 0.

Note:
(i) 22 Po(t) =1, Py(0) = 0.
(ii) hginitial distribution is known, for instance, it is
given by m(x), x € S, then
P(X(t) =y) =) mo(x
x€eS

or my = meP(t) in matrix form.
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e Markov property:

P(X(t) = y|X(s1) = x1, -+ , X(sn) = xp, X(5) = x)

= P(X(t) = y|X(s) = x),

Vo< <+ <5, <s<t,Vxq,- ,Xp, X,y €8S,
Note:

e \We always assume the process is time-homogeneous:

P(X(t) = y|X(s) = x) = P(X(t = s5) = y|X(0) = x),
VO<s<tVx,yeSs.
Therefore

P(X(t) = y|X(s) = x) = Py (t = 5).

e A Markov jump process (MJP) '3 continuous-time
jump process with the Markovian property.
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Now, we always consider the MJP.
Q.: How to determine F,(t) = P,(m < t)?

Recall that F,(t) is the distribution of 71 (the
waiting time for a jump to occur!).

To show: 74 is an exponential rv with density:

1
f(t)=Xe ™ t>0 \& .
& . E(r)

Hence:
t

F(t)=P(m <t) = / f(s)ds =1—e ", t>0.

—0o0
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Def.: Let 7 be a r.v. taking values in [0, 00). Then
T is said to be memoryless if

P(tr>s+tlt>s)=P(r>t), Vs, t>0,

(i.e., after waiting for time s, the prob for waiting
for another time t has no memory that it already
waits for time s.)

e.g. Model: Wait for an unreliable bus driver.
Then, the waiting time is a memoryless r.v.:

“If we have been waiting for s units of time then the prob
we must wait t more units of time is the same as if we
have not waited at alll”
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Proposition. Let 7 be a memoryless r.v. Then 7
is an exponential r.v., and the density is given by

Xe M t>0, A=1/E(7).

Pf.: Let G(t) & P(t > t). As 7 is memoryless,

G(t)=P(r >t)=P(r >s+t|T > s)
_ P(r>s+1t) G(s+t)
 P(r>s)  G(s)

G(s+t)=G(s)G(t), Vs, t>0.
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Assuming G is differentiable,

Note: G(0) = P(t > 0) =1. ... G(t) = e’

Note: G(t) = P(7 > t) is decreasing. .. a < 0. Set
a = —\ (A > 0). The density function is

f(t) = (1 - G(t)) = Xe ™. [
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Proposition. Let X(t), t > 0 be a MJP. For a
non-absorbing state x € S, letting X(0) = x,

r, & inf{t > 0: X(t) # x}. (first time to jump)

Then, 7, is a memoryless r.v.

Pf.:
P(1« > s+ r|1c > s)
=P(X(t)=x,0<t<s+rX(t)=x,0<t < s)
_ P(X() = x,s <t < s+ rX(E) = x,0< £ < s)
= P(X(t) = x,s < t < s+ r|X(s) = x) (Markovian)
= P(X(t) = x,0 < t < r|X(0) = x) (time-homog)
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Remarks:
e For a MJP, as 7, is memoryless:

P(rx > s+ r|m>5s)=P(r > r),

Ag‘l'ﬁ'“—
9L e 0
=Y !I_
< } > time
° ”

it looks like that the process starts from s.

o Set g, & 1/E(7x). Then, 7, has an exponential

density given by g,e %' (t > 0).

252/323



§3.2 Poisson process

We shall give the definition of Poisson process in
terms of the waiting time.

Setup:

eleté,~& n=12 .- beiid. exp. r.v. with
parameter A:

P(¢>t)=e M AN=1/E(&).

e Define 75 = 0, and

Tnd:ef£1+§2+...+€n’ n:]_’z’..
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A State
ne -~-—--—=~~—~ -~ +—o

) |
2¢ - -—---——9°0 |
e
OH- ' s

‘Z:, oo T, '1'['7142

|%§9| kél

Forn=1,2---,
&, ~ & the waiting time for one arrival.
T, the waiting time for the n‘-arrival.
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Fort >0,

X(t) ¥ max{n>0,7, < t},

i.e., the no of arrival in [0, t].

Then, we get a jump process:

X(t)e {0,1,2,---}, t=>0.

Q.:
e What'’s the density of X(t)? (Poisson with
rate \t!)

o Is X(t) a MJP? (YES!)
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Theorem. X(t) is Poisson with E(X(t)) = At:

P(X(t) =n) = e_M(

Pf.: By definition,
{X(t)=n}={m <t <7pu1} = {11 > t}\{m > t}.
Hence,
P(X(t)=n)=P(1the1 >t)— P(th, > 1t). (%)
e n=20:

PX(t)=0)=P(rn>t)—0=P(& >t)=e .
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If so, substituting (*%) into () gives the theorem.
Proof of (xx) by induction:
n=1: P(ry >t) = P(& > t) = e M. (%) holds.

Letting (*x) hold for n > 1, we need to show that
(%) is true for n+ 1. Indeed,
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P(T,H_l > t)
= P(Tn +£n+1 > t)
= P(€n+1 > t) + P(gn-i-l < t,mh + €n+1 > t)

t
_ ot +/ e ™. P(1, >t — s)ds (explain later)
0

VK
e /)\e)\s Ze#\t s) A(t 5) )ds

(Use mductlon assump’uon!)

n—1 Ak+1 t
=eMype ™ —/ (t —s)<ds
0

k!
k=0
-1
=eMipe ™ o A Lt
|
—~ kI (k+1)

n—1 k+1 n k
CAE | At (At) e, (M)
= = —. U
¢ e ZO CES I kz k!
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Note (See Durrett P93-103):

Let X, Y be independent with densities (-), g(-)
over [0,00), resp. Then,

PIX <t,X+Y>t)= // f(x)g(y) dydx
—/0 f(x)/t_x (y )dydx—/0 f(x)P(Y >t — x)dx.
S x=}
t
=L
L-2 e o~
> 2
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1 k=0,
otherwise.

e £(X(t)) = At is the expected no of arrivals
in [0, t]. A is the arrival rate.

260/323



Corollary. The Poisson process {X(t)};>o with
rate A\t satisfies:

(i) X(0) =0.
(i) For 0 <s < t, X(t) — X(s) has Poisson distribution with
mean A(t — s), and is independent of X(s).

(i) For0 <ty < -+ < 8y,
X(tQ) - X(tl)a T ,X(tn) - X(tn—l)
are independent.

Also, {X(t)}+>0 satisfies the Markov property with
E(X(t)) = At, Var(X(t)) = At.

Remark: Very often, (i)(ii)(iii) are also used as the
definition of Poisson process!
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IDEA of Proof:
e (i): Obvious.
o (ii): For0 <s < t,
P(X(t) = X(s) = n)
= 2om=oP(X(s) = m, X(t) = n+ m)

)
= 2 m-oP(X(s) = m)P(X(t) = n+ m|X(s) = m)
= 2 m—oP(X(s) = m)Pmnim(t —5)
= 2 moP(X(s) = m)Pon(t —s)
= Pon(t —s)
_ e Nt=s) [A(t —s)]
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X(t) — X(s) is independent of X(s) means
P(X(t)=X(s) = n,X(s) = m) = P(X(t)=X(s) = n)P(X(s) = m),
equivalently
P(X(t) — X(s) = n|X(s) = m) = P(X(t) — X(s) = n).
Indeed, note
LHS = P(X(t) = m+n|X(s) = m) = Pmmin(t—s) = Pon(t—s).

e (iii): Omit the proof. Intuitively clear (See P94-95
in Durrent Chapter 3)

e For Markov property: Check
P(X(t) = y|X(t1) = x1,- -+, X(ts) = xp, X(5) = x)
— P(X(t) = yIX(s) = x)
forany0<ti <bh<---<t,<s<t. L[]
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Sum: We see that the Poisson process
X(t), t>0,

turns out to be a MJP (continuous-time JP with
the Markov property) with X(0) = 0 and the
transition function:

Forany t >0 and any x,y € $§=4{0,1,2--- },

0 if x>y,

) = e 2y

0.y—x(t) = e b= ifx<y

Here, A > 0 is the arrival rate.

[l
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§3.3 Basic properties of MJP
Let {X(t)}:>0 be a MJP with

Py (t) = P(X(t) = y|X(0) = x).
Proposition. (Chapman-Kolmogorov equation)
Polt+5) = 3 Pult)Py(s)

In matrix form, letting P(t) = [Py,(t)], the above is
P(t+s) = P(t)P(s).

Remark: It is similar to the discrete case
P™1(x Z P™(x,z)P"(z,y)
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Py (t+s)= ZP X(t+s)=y)

P.(X(t)=z,X(t+5)=y)

= Pu(X(t) = 2)P(X(t + 5) = y|X(t) = 2)

= P.(X(t) = z)P(X(t + s) = y|X(0) = x, X(t) = 2)

= P(X(t) = z)P(X(s) = y|X(0) = z) (Markov+Time-Homg)

= PXZ(t)PZy(s).
It follows that

Py(t+s) = }:Pﬂ

266/323



Note: Assume P(t) is differentiable in [0, c0), and

D P(0).

Then, from the C.-K. equation

P(t+s) = P(t)P(s),

one has
&L 0=Pw=PoD
d ,
p » (1) = P'(s) = DP(s).

- [P'(t) = P(t)D = DP(t), t>0.
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Fact |I.

def
D = P'(0) = [qxy]xyes =

called the rate matrix.

+ :entry > 0; —:entry <O0.
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Indeed, note:

qu = P)/<y(0)
_ i Polh) = Py(0)
a h—|>n01+ h
o POX(R) = yIX(0) = X) = P(X(0) = yIX(0) = x)
h—0+ h
i PX) =y X© =21 e

h—0+ h

lim
h—0+ h
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Fact Il. Each row sum of D is zero:

quy = 07

yeS

Indeed, note:

S Py (t)=1,¥t > 0.

yeS

. d
© dt

VxeSs. ()

|t:0 = > P, (0)=0.
yeS

Observe: (x) means g, + Y gx, = 0, that is,
y#x

- qxx
~——

the rate to jump away from x

>

y#X

Qxy
~—

the rate to jump to y from x

[l
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Recall:

e E(7y) is the mean waiting time to jump away from x, so

O = ﬁ is the rate of change. Note:

gx = 0 iff E(7,) = oo, iff x is absorbing.

o Q =[Q,)] is the Markov matrix introduced before.
Q. = 1 iff x is absorbing. For non-absorbing x,

Qu=0, Y Q=1
y#X

and in such case, @, is understood to be the
proportion that the chain will jump to y from x.

Main Theorem:

_qXX — qu qu = qXQxy 'FOF y # X.
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Pf.: Case x is absorbing (gx = 0, Qy, = d,):
Py (t) =0x. .. Gy = P;y(O) = 0.
Conclusion is then TRUE.

Case x is non-absorbing:

Py (t) = P(X(t) = y)
= Py(7x > t, X(t) = yz

A

TV
I: no jump yet

+ P(re < t,X(t) =y).

A\

II: it has jumped
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For I (no jump yet):

te
1\54'0. ‘
Xy—1—
0 t {E ?'Hme,
%L

[ = P(1c > t, X(t) = y)

{0 for y # x,

P (1« >t) =e %t fory=x

N —qx t
et € ' 273/323



For /I (it has jumped):

Stafe
KEZ|oo . g z *—
Xp—
i > time
0
. Ty"—t -5 t

Il = Py(7 < t,X(t) = y)
—ZP Tx < t, X(7x) = z, X(t) = y)
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Py (t) =1+ 1l

- Xye_th + Zz#x fothe_qXSQXZsz(t - S)dS

= Xye—CIxt 4 qxe—thZz;Ax fOthszy(u)eqxudu
(Change of variable: t —s = u)

P F&y(t):: __qxfzy(t)'+'qx§:z¢xczafiy(t)

‘. P)/(y(O) = —qXPXy(O) + QXZZ;,AXszsz(O)

= _qx5xy + qzzz7gXszézy

= - (7)<(5;()/ + qx (;)Xj/

—qx +0 = —gy fOI’y:X, 0
quxy fOI’y;éX.
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Example 1. Poisson process with rate \t:

Pon(t) = P(X(t) = n|X(0) =0) = e‘”%, n=0,1,2,---
et e—)\t% e—)\t%
e_)‘t e_)‘tﬁ [
P(t) = v (transition function)
0 0
Then
AN O e 010 -+ ---
D = P'(0) 0 -2 X O Q=001 .-
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Example 2. Car check up with 3 operations in
sequence:

(1) Engine time up — (2) air condition repair —
(3) break system replacement — (4) leave.
Assume that this is a MJP with the mean time in
each operation 1.2, 1.5, 2.5 hours.

5$={1,2,3 4} The rate of moving up to the next
stage is i L Thus,

12" 1. 2_
1513 0 0 0100
b_ |0 —& 3 0 o [0010
0 0 _2_15% ’ 0001
0 o0 0 o 0001
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Further questions:

(a) What is the prob that after 4hour the car is in step (3)?
That is to find P(X(4) = 3|X(0) = 1).

(b) What is the prob that after 4hour the car is still in the
shop? That is to find P(X(4) = 4|X(0) = 1).

Generally, need to find
P11(t) Pro(t) Pi3(t) Pia(t)
P(t) = P21 (t) Pao(t) Pas(t) Paa(t)
P31(t) Ps2(t) Ps3(t) Psa(t)
Pa1(t) Pao(t) Pas(t) Paa(t)
Method: Solve the linear ODE system:

P'(t) = DP(t), P(0)=I.
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Example 3. A barbar shop with two barbars and
two waiting chains. Customers arrives at a rate 5
per hr. Each barbar serves at a rate 2 per hr. If the
waiting chains are full the customer will leave.

X(t) % the no of customers in the shop.

5$=1{0,1,2,3,4}.
o 1 2 3 4 (01000]
0[-5 5 0 0 0] 5
12 -7 5 0 O 7272
D=12l0 4 —9 5 0| Q@=10503
310 0 4 -9 5 00503
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Further questions:

(a) In the long run, what is the prob to have one
customer, two customers, etc.? That is to find
lim P(X(t) =k), keS.

t—00

(b) Find the expected time for it to be full, counting
from the opening time. That is to find

where T, = inf{t : X(t) =y, X(0) = 0}.
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How to solve:
P’(t) = DP(t), P(0)=1.

Case when S is finite:

of o (tD)"
P(t) = e d:fg ( |) (convergent!).
n!
n=0

Informal Proof: At t =0, etP = &P = |
(Convention: 0° =1, D® = /), and for t > 0,

L 1Dn
SN
i%
o (n—1)!
— Detl. O 281/323
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-11
2 =2

Sol.: Look for D = Qdiag {\1, A2} Q1.
(i) Eigenvalues: det(D — \/) =0,

Example. Let D = [ ] Q.: Find P(t).

: -1-X 1
|.e.,0:det[ 5 _2_/\}:(—1—)\)(—2—)\)—2,
e, A2+31x=0. . A=0,-3.
- _ C[-11 1
(i) Eigenvectors: A=0:D — A\ = 5 _2],el— 1l
21 1
v siowe s [
2 1
e 11 3 3
Let Qd:f [eljez] = |:1 _;|1 Q_l = [2 _31 . Then,
373
00| A . 100 ] 4
[0_3]—0 DQ, /.e.,D—Q[O?J :

282/323



Remark: Set 7 =[2/3,1/3]. Then, 7P(t) =m, YVt >0,so 7
is a SD for P(t).
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§3.4 The birth and death process

Setup:
Let S ={0,1,---1,
X Ao 0 0 0]
Je51 —()\1+,LL1) /\1 00
D = [gy] =
[q y] 0 J o) —(>\2+,u2) >\2 0
0 0 .. ot

Assume that all A\, ux # 0(> 0).
Ayx: birth rate, puy: death rate

. ET‘J' P« ' Tole N @
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Example 1. Revisit the Poisson process.

We already derived earlier P(t) = [P,,(t)] for a
Poisson process X(t), t > 0, using

X(t) = max{n: 1, < t}.

We further have derived:

—A A
P'(t)= P(t)D, D= DY :

A > 0: arrival rate.
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Here we want to derive the inverse:

Proposition. If X(t) is a MJP with rate matrix

—A A
D = —A A

then X(t) has the Poisson distribution, i.e.

_)\t()\t)(y_x) c
Py (t) = {e yoor Ty2x20

0 otherwise.

It is another way of obtaining the Poisson process.
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Pf.: Recall

PL(E) =3 Pult)ay.
Observe
(i) If y =0, then

>/<O(t) = _/\’DXO(t)v PXO(O) = 0x0-
L. PxO(t) - Xoe_At.

(ii) If y > 1, then

Po(t) = APxy1(t) = APy(t), Py (0) = 0y

t
Py (t) = e M5, +/ e MNP, 1(s) ds.
0
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Claim #1. P, (t) =0, Vy < x. Indeed,
if y=0(x>1), Po(t)=0.
ify=1(x>2),
Pla(t) = APxo(t) = APc1(t) = —=APca(t), Pxa(0) =0.

Px,l(t) =0.

If y =2 (x> 3),
P;Q(t) = AP 1(t) — APxa(t) = —=APyo(t), Py2(0) =0.

Inductively,
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Claim #2. P, (t) = e P vy > x>0,

Indeed, let x > 0 be fixed.
For y = x,

t
Po(t) = e M+ / e MNP 1(s) ds = e M,
° =0

Fory = x+1,

t
Pexii(t) = e Mo, i1+ / e M AP, . (5) ds
N—— 0 N——

=0 :e—)\s

— .. = e ML

Inductively, we get the desired result. [l

289/323



Exercise:

(1) Extend the above to

D —

[\ Ao
M N
“Xo Mo )

It is a general pure birth process.

(2) Think about the more general BD process:

D—

— o Ao

p1 —(A1 4 p)
0 M2
0 0

0 0 0
A1 00
—()\2 + ,LLQ) )\2 0

(see. P.98).

200/323



Example 2. Branching Process:

— A collection of particles

— each waiting to
either split into two particles with prob p
or vanish with prob (1 — p)

— the waiting time is exp. r.v. with rate \.

X(t) " be the no of particles at time t.

Q.: Find the rate matrix D.
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Lemma. Let &, - ,&, be independent r.v. having

exponential distribution with rate aq, - , a,, resp.
Then,

nﬂn{éla"°7£n}
is an exponential r.v. with rate

a1 + N + @n’
and foreach k=1,--- ,n

: 107
P(&. = min e 6L = .U
(&x {&, . &)) ot o

If so, then
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[ 1 0

l=p 0 »p . N
Q= 1-p 0 p (Markov matrix for state transition),

0 0 0

(1-pA -2 pA
D = 2M1—=p) —=2X 2Xp (rate matrix).
31— p) =3A3Ap

Indeed,

e Let X(0) = x, and &1, -+, &« be the time any one of the particles

e At time 73 = min{&y, - , &}, the no of particles will be x + 1 or
x—1.
e By lemma above, 7 is an exp. r.v. with rate \x:

the portion to x + 1 =p-Ax; the portion to x =1 =(1 — p)-Ax.
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/—Wan. m{,: \-P

yran P(DL:f

&

/Pm'ﬁidz

d«'SA/WW'mg

AX =

p-Ax =

(L—p) Ax =

Jue to one

@ Auz o ona

. viicle

/Pc. 4—‘ |
$‘F]VH';V\6

the rate to jump away from x

the rate to jump to x + 1

(Birth rate)

the rate to jump to x — 1

(Death rate)




Proof of Lemma:

P(min{&,---, &} > t)
=P >t & >t)
= P(& > t) X - X P(€, > 1)
—e M x ... x e Mt
,(a1+...+an)t.

e
To consider P(&x = min{&y, -+ ,&,}), W.L.G. take
k =1. Set

n=min{&, -, &}

Then by above, 1 is an exp.r.v. with rate

n
def
61: E Qy .
y=2
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P(§& = min{&, -+, &n})
= P(& < 1)

= //ozle_o‘lx . Bre Y dxdy

X<y

()

a

ar + B
a1

n
a1+Zy:2ay

a1
a1+ oo+ + ap
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For instance, consider &1, & only:

P(& = min{&1,6)) = P(& < &)

= // are” Y ape” ¥ dxdy
Xy

631

a1 + [6%)

N (3.)
Vs
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Remark: Suppose that we allow new particles to
immigrate into the system at rate «, and then give
succeeding generation.

n %' the first time a new particle arrives.
71 = min{&, -, &, n}: the waiting time to change.

the rate of changing away from x particles = x\ + a.v

—« a
(1-pA—-(A+0a) pr+a
D= 2(1—p)A —(2 4+ @) 2pA + «

See the textbook P92. O
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Example 3. Queuing Model.

def : :
X(t) = the no of persons on the line at time t
waiting for service.

arrival rate \ : Poisson
service rate p: exponential distr

There are several models for queueing.
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e M/M/1 queue:

M stands for memoyless,

1°* M stands for waiting time for the arrival,
274 M stands for waiting time for service,

The last number is for the number of servers.

-\ A 00
D=|p (=A+p) XA 0
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e M/M/k queue (k servers):

_ ~Jonp if n <k,

Note: jin = {ku ifn> k.
S _
po—(utN) A 0

2 —(u+A) A

(ki it ) A
O ki —(kp+A) A
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e M/M/oco queue (oo servers):

—A A

po—(ptA) A
2 —Ru+A) A

arrival rate = ), service rate = p,
def : :
X(t) = the no of customers on the line at time t.

(e.g., in the telephone exchange, this is a continuous-time

version of a previous example in the Markov chain).

Q.: Find Py (t) and tlim Py, (t).
— 00
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Lemma. Let Y(t) be a Poisson process with rate
A. Then for 0 < s < t (¢t fixed),

P <s|Y(t)=1) = ;

i.e. the density function is % on [0, t], namely, given
that the arrival (one) is within [0, t], the arrival time
is a uniform distr on [0, t].

Note: This is a special case of Ex 6 with Y(t) = n.
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Pf.: For0 <s < t,
P(r <s|Y(t) =1)
= P(Y(s) =1]Y(t) =1)
_ P(Y(s)=1,Y(t)=1)
P(Y(t)=1)
_ P(Y(s)=1,Y(t)— Y(s) =0)
P(Y(t)=1)

e—)\s(AS) . e—/\(t—s) (A(t=9))°
1! 0!

e—)\t()‘t)

1!

|
H-.l 0
L]



Assume X(0) = x.

Y(t) % the total no that arrived in time (0, t].

Let
X(t) = R(t) + N(t),

R(t) % the no of the original x (at t = 0) that

are still being served,

N(t) ' the no of those from Y(t) that are still

being served.
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Fact 1. R(t), i.e., the no of the original x (at
t = 0) that are still being served,

is a binomial r.v.:

P(R(t) = k) = (i) (e MYK(1 — e )k,

0 < k<x,

x = the total no at t = 0,
e " = the success prob of still being served.
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Fact 2. Recall: Y(t) is the total no that arrived in
time (0, t]. We want to consider

P(N(t) = n|Y(t) = k).

Note: Fix t.
e Given Y(t) = k, N(t) should be a binomial r.v., but we
have to find “the success prob":

pr = P(N(t) = 1|Y(t) = 1).

e For one that arrived at time s € (0, t], the prob of still
being served at time t is e (=),

e By lemma, the arrival time s subject to one arrival in
(0, t] is uniform dist 1/t.

e Then the prob that he is still being served at time t is

t —ut
pt — / 1 . ef:u‘(tfs)ds — ]-_—eu
o t pt
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Hence,

—

Atpe)" aip,
= e .
nl

(see P101)

The same as in last Chap (P55). O
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We conclude that (Recall X(t) = R(t) + N(t))

Py (t) = P(X(t) = y)

= > PR = WP(N() =y — K

k=0

min{x,y} _
= Zy (i) e_kut(]- - e—Mt)X_k (AtPt) k " .

— (y — k!

For t — o0, all the terms vanish except k = 0:

I|m P

xy

( ) e—A/u( ﬁﬁd

(tpr = 1/ as t — 00).

Note: Compare it with the “telephone exchange” example
last chapter.
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§3.5 Limiting properties of MJP

The definitions of
— stationary distribution (SD)
— recurrence or transience
— etc

are the same as Markov chain.

Let us only sketch some of them.
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e SD:

Let

be a MJP.

Def.: 7 is called a SD if
(i) (distribution)
w(y) > 0,Vy € S; Zﬂ(y) = 1.
y

(i) (stationary)
Z?T(X)ny(t) =m(y),Vy € S,Vt > 0.

xeS

311/323



How to find the SD #?

In fact,

0= (Z W(X)ny(t)> =) w(x)P,(1).

X X

(Note: there is a technical point to interchange ) and (-)’

X

for the infinite sum)

Let t — O+, then > 7(x)gyx, = 0, i.e. in matrix

form
D =0,

where D = [q,,] is the rate matrix. The converse is

also true.
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Example. Find the SD of the birth and death
process with rate

—o Ao
1 — (A1 + )
M2

A

— (A2 + 12) A2
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SOI.: Let 7 = (X(),Xl7 e ) ™D =0 is
— o Ao
[x0, x1, - -] [“1 —(p+ A1) M =1[0,0,--].

Hence
{ —XoXg + p1xy = 0,

Ak—1Xk—1 — (>\k + ,uk)Xk + pk1Xer1 = 0, kK > 1.

Note: For k > 1,

MeXk — Mk+1Xk+1 = Ak—1Xk—1 — MkXk

= = Aoxo — rxy = 0.

* _A p— T ee— ———— e e e
o Xk = m Xk—1 = = X0,

CXe=Bioo, BiE S (k> 1),
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Formally, >” xx = (>_ Bk)xo (Convention: [y = 1).

k=0 k=0
Then,

oif B = def Z Bk < 0o, then choosing xg =

=0

_ (LB B
_(5’5’5’ )lsaSD.

‘:blh*

o if Z Bk = oo, then, no SD! O
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Exercise: Use this to check the queue models:
M/M/1, M/M/2, M/M/c.

For instance, M/M /oo case:

{)\k:)\(k>0) ﬁk:(&)'”

ko =kp (k>1) i
IRED
k>0
LA e (22 ek
R e_ﬁ’e_ﬁ_} K Sy K o
u 2l Kl

“the same as the one by looking for the limit
distribution lim Py, (t)"

t—00
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e Recurrence and transience.

f L :
71 & the first time to jump

T, ¥ min{t > r : X(t) = y} (hitting time)

(=0 if X(t) £ y,Vt =)

Py & PT, < o)

(the prob that the process starting from x eventually hits y)

Recurrent: p,, = 1.
Transient: p,, < 1.
Process is irreducible: p,, >0, Vx,y € 5.
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Let @ be the matrix in the MJP, i.e.
P < t,X(n1) =y) = F(t)Qy, ¥ # X,

Fo(t)=1— e %%

Assume irreducible, i.e. g, > 0, Vx. Then

P(X(1) = y|X(0) = x) = Qu(= ‘Z;y) Vy % x.

Let o =1, and
Z,=X(1), n=0,1,2,---

(Only count the jump each time, but ignore the
length of waiting time).
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Then,

{Z,}°, is a Markov chain with Q as tran-
sition matrix.

Note:

T, d:eflnf{t i X(t) =y} < o0

iff

T, ' inf{n>1:Z, =y} < oo (as Markov chain).

" Pxy for {2,102, is the same as p,, for {X(t)}+=o0.
.".To check recurrent/transience,

we need only consider Q!
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Example: In the birth & death process

1

A
0 A1+
M2 O

(0 1
g1 0 ;
G 0 p

It follows from Chapter 1 (P33) that the chain is

recurrent iff

© Ml...un: 0 ql...qn

R

= OQ.

“— p1- P
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e Long-run behavior.

Let m, & E.(Tx) (the mean return time).

— Null recurrent: my, = oo
— Positive recurrent: m, < oo. In this case

7(x) = — (+)

qx My

Intuitive Proof of (x):

— In [0, t] for large t, the process will visit x for -
times and the average time staying at x (waiting
time to jump way) per visit is 1/qx.

1

. - - - t
— The total time spent in x during [0, t] is - - o

— The proportion of time spent in x is ——.
Qx My
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Note: Any MJP is aperiodic.

For an irreducible, positive recurrent MJP,

: 1
im Po(t) =7ly) = - xyes.
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The end of lectures
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