
Chapter 3:

Markov Jump Process
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§3.1 Introduction

• Jump process.

Recall: a MC (discrete-time stochastic process
with the Markovian property):

X (n) 2 S , n = 0, 1, 2, · · · .
S: finite or countably infinite,
e.g. S = {0, 1, ...,N} (N  1).0<>1< >2<>3
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Consider a continuous-time stochastic process:

X (t) 2 S , 0  t < 1,

S: finite or countably infinite.

0<>1< >2<>3
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� ⌧1, ⌧2, · · · : the waiting time to jump (random).
� X (⌧1),X (⌧2), · · · : where to jump (random).
� Always assume: limn!1 ⌧n = 1 (No blow-up!)
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• Probability structure.

Def.: x 2 S is absorbing if

“X (t) = x for some t > 0”)“X (s) = x , 8 s > t”.
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Given a non-absorbing state X (0) = x 2 S , we
need to know two things:

(i) Fx(t), t > 0: the distribution of the waiting
time ⌧1. Note:

Fx(t) = Px(⌧1  t).

(ii) Qxy : the transition prob to jump from a state x
to another state y( 6= x):

Qxx = 0,
X

y2S

Qxy = 1.

(If x is absorbing, Qxy = �xy =

⇢
1, for x = y ,
0, otherwise.

)
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For non-absorbing x , we assume:

Px(⌧1 6 t,X (⌧1) = y) = Px(⌧1 6 t)Qxy ,

i.e.

⌧1 (the waiting time to jump)

and

X (⌧1) (jump to where)

are independent!
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Similar to the MC (discrete-time), our concern is
to determine the transition function:

Pxy(t)
def
= P(X (t) = y |X (0) = x) = Px(X (t) = y),

i.e., the prob that the process starting at x will be
at y at time t > 0.

Note:
(i)
P
y
Pxy(t) = 1, Pxy(0) = �xy .

(ii) If initial distribution is known, for instance, it is
given by ⇡0(x), x 2 S , then

P(X (t) = y) =
X

x2S

⇡0(x)Pxy(t),

or ⇡t = ⇡0P(t) in matrix form.
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• Markov property:

P(X (t) = y |X (s1) = x1, · · · ,X (sn) = xn,X (s) = x)

= P(X (t) = y |X (s) = x),

8 0 6 s1 6 · · · 6 sn 6 s 6 t, 8 x1, · · · , xn, x , y 2 S .

Note:
• We always assume the process is time-homogeneous:

P(X (t) = y |X (s) = x) = P(X (t � s) = y |X (0) = x),

8 0 6 s 6 t, 8 x , y 2 S .

Therefore

P(X (t) = y |X (s) = x) = Pxy (t � s).

• A Markov jump process (MJP)
def
= a continuous-time

jump process with the Markovian property.
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Now, we always consider the MJP.

Q.: How to determine Fx(t) = Px(⌧1  t)?

Recall that Fx(t) is the distribution of ⌧1 (the
waiting time for a jump to occur!).

To show: ⌧1 is an exponential rv with density:

f (t) = �e��t , t � 0; �
def
=

1

E (⌧1)
.

Hence:

Fx(t) = P(⌧1  t) =

Z t

�1
f (s) ds = 1�e��t , t � 0.
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Def.: Let ⌧ be a r.v. taking values in [0,1). Then
⌧ is said to be memoryless if

P(⌧ > s + t|⌧ > s) = P(⌧ > t), 8 s, t > 0,

(i.e., after waiting for time s, the prob for waiting
for another time t has no memory that it already
waits for time s.)

e.g. Model: Wait for an unreliable bus driver.
Then, the waiting time is a memoryless r.v.:

“If we have been waiting for s units of time then the prob
we must wait t more units of time is the same as if we
have not waited at all!”
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Proposition. Let ⌧ be a memoryless r.v. Then ⌧
is an exponential r.v., and the density is given by

�e��t , t > 0; � = 1/E (⌧).

Pf.: Let G (t)
def
= P(⌧ > t). As ⌧ is memoryless,

G (t) = P(⌧ > t) = P(⌧ > s + t|⌧ > s)

=
P(⌧ > s + t)

P(⌧ > s)
=

G (s + t)

G (s)
,

i.e.
G (s + t) = G (s)G (t), 8 s, t > 0.
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Assuming G is di↵erentiable,

G 0(t) = lim
h!0+

G (t + h)� G (t)

h

= lim
h!0+

G (t)G (h)� G (t)

h

= G (t) lim
h!0+

G (h)� 1

h
def
= G (t)↵.

Note: G (0) = P(⌧ > 0) = 1. ) G (t) = e↵t .

Note: G (t) = P(⌧ > t) is decreasing. ) ↵ < 0. Set
↵ = �� (� > 0). The density function is

f (t) = (1� G (t))0 = �e��t .
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Proposition. Let X (t), t > 0 be a MJP. For a
non-absorbing state x 2 S , letting X (0) = x ,

⌧x
def
= inf{t > 0 : X (t) 6= x}. (first time to jump)

Then, ⌧x is a memoryless r.v.

Pf.:

P(⌧x > s + r |⌧x > s)

= P(X (t) = x , 0 6 t 6 s + r |X (t) = x , 0 6 t 6 s)

= P(X (t) = x , s 6 t 6 s + r |X (t) = x , 0 6 t 6 s)

= P(X (t) = x , s 6 t 6 s + r |X (s) = x) (Markovian)

= P(X (t) = x , 0 6 t 6 r |X (0) = x) (time-homog)

= P(⌧x > r).
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Remarks:

• For a MJP, as ⌧x is memoryless:

P(⌧x > s + r |⌧x > s) = P(⌧x > r),

a
state

gl• 0

i.

←r→
.•
:

• i. > time

0 S
E

N

it looks like that the process starts from s.

• Set qx
def
= 1/E (⌧x). Then, ⌧x has an exponential

density given by qxe�qx t (t � 0).
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§3.2 Poisson process

We shall give the definition of Poisson process in
terms of the waiting time.

Setup:

• Let ⇠n ⇠ ⇠, n = 1, 2, · · · , be i.i.d. exp. r.v. with
parameter �:

P(⇠ > t) = e��t , � = 1/E (⇠).

• Define ⌧0 = 0, and

⌧n
def
= ⇠1 + ⇠2 + · · ·+ ⇠n, n = 1, 2, · · ·
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For n = 1, 2, · · · ,
⇠n ⇠ ⇠: the waiting time for one arrival.
⌧n: the waiting time for the nth-arrival.

254/323



For t > 0,

X (t)
def
= max{n > 0, ⌧n 6 t},

i.e., the no of arrival in [0, t].

Then, we get a jump process:

X (t) 2 {0, 1, 2, · · · }, t > 0.

Q.:

• What’s the density of X (t)? (Poisson with
rate �t!)

• Is X (t) a MJP? (YES!)
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Theorem. X (t) is Poisson with E (X (t)) = �t:

P(X (t) = n) = e��t (�t)
n

n!
, n = 0, 1, 2 · · · .

Pf.: By definition,

{X (t) = n} = {⌧n 6 t < ⌧n+1} = {⌧n+1 > t}\{⌧n > t}.

Hence,

P(X (t) = n) = P(⌧n+1 > t)� P(⌧n > t). (⇤)

• n = 0:

P(X (t) = 0) = P(⌧1 > t)� 0 = P(⇠1 > t) = e��t .

256/323



• To show:

P(⌧n > t) = e��t
n�1X

k=0

(�t)k

k!
, (⇤⇤)

n = 1, 2, · · · .

If so, substituting (⇤⇤) into (⇤) gives the theorem.

Proof of (⇤⇤) by induction:

n = 1: P(⌧1 > t) = P(⇠1 > t) = e��t . (⇤⇤) holds.

Letting (⇤⇤) hold for n � 1, we need to show that
(⇤⇤) is true for n + 1. Indeed,
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P(⌧n+1 > t)

= P(⌧n + ⇠n+1 > t)

= P(⇠n+1 > t) + P(⇠n+1  t, ⌧n + ⇠n+1 > t)

= e��t +

Z t

0

�e��s · P(⌧n > t � s) ds (explain later)

= e��t +

Z t

0

�e��s ·
n�1X

k=0

e��(t�s) (�(t � s)k)

k!
ds

(Use induction assumption!)

= e��t + e��t
n�1X

k=0

�k+1

k!
·
Z t

0

(t � s)kds

= e��t + e��t
n�1X

k=0

�k+1

k!
· tk+1

(k + 1)

= e��t + e��t
n�1X

k=0

(�t)k+1

(k + 1)!
= e��t

nX

k=0

(�t)k

k!
.
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Note (See Durrett P93-103):

Let X ,Y be independent with densities f (·), g(·)
over [0,1), resp. Then,

P(X < t,X + Y > t) =

Z t

0

Z 1

t�x

f (x)g(y) dydx

=

Z t

0

f (x)

Z 1

t�x

g(y) dydx =

Z t

0

f (x)P(Y > t � x)dx .

Ya . x=t

toE- x•
...

... .

•
-

×tY=t

• •

.
if R

0 N

t
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Remarks:

• Note:

P(X (0) = k) = �0k =

⇢
1 k = 0,
0 otherwise.

) P(X (t) = n) =
1X

k=0

P(X (0) = k)P(X (t) = n|X (0) = k)

=
1X

k=0

�0kPkn(t)

= P0n(t).

) P0n(t) = e��t (�t)
n

n!
, n = 0, 1, 2 · · · .

• E (X (t)) = �t is the expected no of arrivals
in [0, t]. � is the arrival rate.
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Corollary. The Poisson process {X (t)}t>0 with
rate �t satisfies:

(i) X (0) = 0.
(ii) For 0 < s < t, X (t)� X (s) has Poisson distribution with

mean �(t � s), and is independent of X (s).
(iii) For 0 6 t1 6 · · · 6 tn,

X (t2)� X (t1), · · · ,X (tn)� X (tn�1)

are independent.

Also, {X (t)}t>0 satisfies the Markov property with

E (X (t)) = �t, Var(X (t)) = �t.

Remark: Very often, (i)(ii)(iii) are also used as the
definition of Poisson process!
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IDEA of Proof:

• (i): Obvious.

• (ii): For 0 < s < t,

P(X (t)� X (s) = n)

=
P1

m=0P(X (s) = m,X (t) = n +m)

=
P1

m=0P(X (s) = m)P(X (t) = n +m|X (s) = m)

=
P1

m=0P(X (s) = m)Pm,n+m(t � s)

=
P1

m=0P(X (s) = m)P0,n(t � s)

= P0,n(t � s)

= e��(t�s) [�(t � s)]n

n!
.
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X (t)� X (s) is independent of X (s) means
P(X (t)�X (s) = n,X (s) = m) = P(X (t)�X (s) = n)P(X (s) = m),

equivalently
P(X (t)� X (s) = n|X (s) = m) = P(X (t)� X (s) = n).

Indeed, note
LHS = P(X (t) = m+n|X (s) = m) = Pm,m+n(t�s) = P0,n(t�s).

• (iii): Omit the proof. Intuitively clear (See P94-95
in Durrent Chapter 3)

• For Markov property: Check

P(X (t) = y |X (t1) = x1, · · · ,X (tn) = xn,X (s) = x)

= P(X (t) = y |X (s) = x)

for any 0 6 t1 < t2 < · · · < tn < s 6 t.
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Sum: We see that the Poisson process

X (t), t � 0,

turns out to be a MJP (continuous-time JP with
the Markov property) with X (0) = 0 and the
transition function:

For any t � 0 and any x , y 2 S = {0, 1, 2 · · · },

Pxy (t) =

8
>><

>>:

0 if x > y ,

= P0,y�x(t) = e��t (�t)
y�x

(y � x)!
if x  y .

Here, � > 0 is the arrival rate.
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§3.3 Basic properties of MJP

Let {X (t)}t>0 be a MJP with

Pxy(t) = P(X (t) = y |X (0) = x).

Proposition. (Chapman-Kolmogorov equation)

Pxy(t + s) =
X

z

Pxz(t)Pzy(s).

In matrix form, letting P(t) = [Pxy(t)], the above is

P(t + s) = P(t)P(s).

Remark: It is similar to the discrete case

Pm+n(x , y) =
X

z2s
Pm(x , z)Pn(z , y)

Pm = Pm · Pn (matrix form)
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Pf.: Note:

Pxy (t + s) =
X

z

Px(X (t) = z ,X (t + s) = y)

and

Px(X (t) = z ,X (t + s) = y)

= Px(X (t) = z)Px(X (t + s) = y |X (t) = z)

= Px(X (t) = z)P(X (t + s) = y |X (0) = x ,X (t) = z)

= Px(X (t) = z)P(X (s) = y |X (0) = z) (Markov+Time-Homg)

= Pxz(t)Pzy (s).

It follows that

Pxy (t + s) =
X

z

Pxz(t)Pzy (s).
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Note: Assume P(t) is di↵erentiable in [0,1), and

D
def
= P 0(0).

Then, from the C.-K. equation

P(t + s) = P(t)P(s),

one has

d

ds

����
s=0

(·) ) P 0(t) = P(t)D,

d

dt

����
t=0

(·) ) P 0(s) = DP(s).

) P 0(t) = P(t)D = DP(t), t � 0.
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Fact I.

D = P 0(0)
def
= [qxy ]x ,y2S =

2

6664

�+ + + · · ·
+� + + · · ·
++ � + · · ·
...
... . . . . . . . . .

3

7775
,

called the rate matrix.

+ : entry � 0; � : entry  0.
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Indeed, note:

qxy = P 0
xy (0)

= lim
h!0+

Pxy (h)� Pxy (0)

h

= lim
h!0+

P(X (h) = y |X (0) = x)� P(X (0) = y |X (0) = x)

h

=

8
>>>><

>>>>:

lim
h!0+

P(X (h) = y |X (0) = x)�1

h
(6 0) if x = y ,

lim
h!0+

P(X (h) = y |X (0) = x)�0

h
(> 0) if x 6= y .
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Fact II. Each row sum of D is zero:
X

y2S

qxy = 0, 8 x 2 S . (⇤)

Indeed, note:
P
y2S

Pxy(t) = 1, 8 t � 0. ) d
dt

��
t=0

)
P
y2S

P 0
xy(0) = 0.

Observe: (⇤) means qxx +
P
y 6=x

qxy = 0, that is,

�qxx|{z}
the rate to jump away from x

=
X

y 6=x

qxy|{z}
the rate to jump to y from x

.

270/323



Recall:

• E (⌧x) is the mean waiting time to jump away from x , so
qx =

1
E(⌧x )

is the rate of change. Note:

qx = 0 i↵ E (⌧x) = 1, i↵ x is absorbing.

• Q = [Qxy ] is the Markov matrix introduced before.
Qxx = 1 i↵ x is absorbing. For non-absorbing x ,

Qxx = 0,
X

y 6=x

Qxy = 1,

and in such case, Qxy is understood to be the
proportion that the chain will jump to y from x .

Main Theorem:

�qxx = qx ; qxy = qxQxy for y 6= x .

271/323



Pf.: Case x is absorbing (qx = 0,Qxy = �xy):

Pxy(t) = �xy . ) qxy = P 0
xy(0) = 0.

Conclusion is then TRUE.

Case x is non-absorbing:

Pxy(t) = Px(X (t) = y)

= Px(⌧x > t,X (t) = y)| {z }
I : no jump yet

+Px(⌧x 6 t,X (t) = y)| {z }
II : it has jumped

.
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For I (no jump yet):

% . x=t

t•E- x•
...

... ...

-

×ty=t

•

• •

.
& R

0 N

t

tnstate
;•

k• o

:

!

:

:

:

• •
:

7

0
t

Tn

time

restate

ktz
.... ... ... .

.;qq

... Yoo

N•
:

:

:

•
:

• >
time

0

see
t

*ts#

I = Px(⌧x > t,X (t) = y)

=

(
0 for y 6= x ,

Px(⌧x > t) = e�qx t for y = x

= �xye
�qx t .
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For II (it has jumped):
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II = Px(⌧x 6 t,X (t) = y)

=
X

z 6=x

Px(⌧x 6 t,X (⌧x) = z ,X (t) = y)

=
X

z 6=x

Z t

0
Px(⌧x = s)QxzPzy(t � s)ds

=
X

z 6=x

Z t

0
qxe

�qxsQxzPzy(t � s)ds.
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) Pxy(t) = I + II

= �xye
�qx t +

P
z 6=x

R t
0 qxe

�qxsQxzPzy(t � s)ds

= �xye
�qx t + qxe

�qx t
P

z 6=x

R t
0QxzPzy(u)eqxudu

(Change of variable: t � s = u)

) P 0
xy(t) = �qxPxy(t) + qx

P
z 6=xQxzPzy(t)

) P 0
xy(0) = �qxPxy(0) + qx

P
z 6=xQxzPzy(0)

= �qx�xy + qz
P

z 6=xQxz�zy

= �qx�xy + qxQxy

=

(
�qx + 0 = �qx for y = x ,

qxQxy for y 6= x .
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Example 1. Poisson process with rate �t:

P0n(t) = P(X (t) = n|X (0) = 0) = e��t (�t)
n

n!
, n = 0, 1, 2, · · ·

P(t) =

2

66664

e��t e��t �t
1! e

��t (�t)2

2! · · ·
0 e��t e��t �t

1! · · ·
0 0

. . . . . .

0 0 0
. . .

3

77775
(transition function)

Then

D = P 0(0) =

2

4
�� � 0 · · · · · ·
0 �� � 0 · · ·
0 0

. . . . . . . . .

3

5 , Q =

2

4
0 1 0 · · · · · ·
0 0 1 · · · · · ·
0 0

. . . . . . . . .

3

5 .
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Example 2. Car check up with 3 operations in
sequence:
(1) Engine time up ! (2) air condition repair !
(3) break system replacement ! (4) leave.

Assume that this is a MJP with the mean time in
each operation 1.2, 1.5, 2.5 hours.

S = {1, 2, 3, 4}. The rate of moving up to the next
stage is 1

1.2 ,
1
1.5 ,

1
2.5 . Thus,

D =

2

66664

� 1
1.2

1
1.2 0 0

0 � 1
1.5

1
1.5 0

0 0 � 1
2.5

1
2.5

0 0 0 0

3

77775
, Q =

2

664

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

3

775 .
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Further questions:

(a) What is the prob that after 4hour the car is in step (3)?
That is to find P(X (4) = 3|X (0) = 1).

(b) What is the prob that after 4hour the car is still in the
shop? That is to find P(X (4) = 4|X (0) = 1).

Generally, need to find

P(t) =

2

664

P11(t) P12(t) P13(t) P14(t)
P21(t) P22(t) P23(t) P24(t)
P31(t) P32(t) P33(t) P34(t)
P41(t) P42(t) P43(t) P44(t)

3

775 .

Method: Solve the linear ODE system:

P 0(t) = DP(t), P(0) = I .
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Example 3. A barbar shop with two barbars and
two waiting chains. Customers arrives at a rate 5
per hr. Each barbar serves at a rate 2 per hr. If the
waiting chains are full the customer will leave.

X (t)
def
= the no of customers in the shop.

S = {0, 1, 2, 3, 4}.

D =

0 1 2 3 42

66664

3

77775

0 �5 5 0 0 0
1 2 �7 5 0 0
2 0 4 �9 5 0
3 0 0 4 �9 5
4 0 0 0 4 �4

, Q =

2

66666664

0 1 0 0 0
2
7 0

5
7 0 0

0 4
9 0

5
9 0

0 0 4
9 0

5
9

0 0 0 1 0

3

77777775

.
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Further questions:

(a) In the long run, what is the prob to have one
customer, two customers, etc.? That is to find

lim
t!1

P(X (t) = k), k 2 S .

(b) Find the expected time for it to be full, counting
from the opening time. That is to find

E (Ty),

where Ty = inf{t : X (t) = y ,X (0) = 0}.
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How to solve:

P 0(t) = DP(t), P(0) = I .

Case when S is finite:

P(t) = etD
def
=

1X

n=0

(tD)n

n!
(convergent!).

Informal Proof: At t = 0, etD = e0D = I
(Convention: 00 = 1, D0 = I ), and for t > 0,

(etD)0 =
1X

n=1

tn�1Dn

(n � 1)!

= D

" 1X

n=1

(tD)n�1

(n � 1)!

#

= DetD . 281/323



Example. Let D =


�1 1
2 �2

�
. Q.: Find P(t).

Sol.: Look for D = Q diag {�1,�2}Q�1.

(i) Eigenvalues: det(D � �I ) = 0,

i.e., 0 = det


�1� � 1

2 �2� �

�
= (�1� �)(�2� �)� 2,

i.e., �2 + 3� = 0. ) � = 0,�3.

(ii) Eigenvectors: � = 0 : D � �I =


�1 1
2 �2

�
, e1 =


1
1

�
.

� = �3 : D � �I =


2 1
2 1

�
, e2 =


1
�2

�
.

Let Q
def
= [e1, e2] =


1 1
1 �2

�
, Q�1 =

"
2
3

1
3

2
3 �

1
3

#
. Then,


0 0
0 �3

�
= Q�1DQ, i .e., D = Q


0 0
0 �3

�
Q�1.
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Hence

P(t) = etD =
1X

n=0

(tD)n

n!
= Q

0

BB@
1X

n=0

✓
t


0 0
0 �3

�◆n

n!

1

CCAQ�1

= Q

P1
n=0

0n

n! 0
0

P1
n=0

(�3t)n

n!

�
Q�1

=

"
2
3

1
3

2
3

1
3

#
+ e�3t

"
1
3 �1

3

�2
3

2
3

#
,

) lim
t!1

P(t) =

"
2
3

1
3

2
3

1
3

#
, namely,

lim
t!1

P(X (t) = 0) = 2/3, lim
t!1

P(X (t) = 1) = 1/3.

Remark: Set ⇡ = [2/3, 1/3]. Then, ⇡P(t) = ⇡, 8 t � 0, so ⇡

is a SD for P(t).
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§3.4 The birth and death process

Setup:

Let S = {0, 1, · · · },

D = [qxy ] =

2

6664

��0 �0 0 0 0
µ1 �(�1 + µ1) �1 0 0
0 µ2 �(�2 + µ2) �2 0

0 0 . . . . . . . . .

3

7775
.

Assume that all �x , µx 6= 0 (> 0).

�x : birth rate, µx : death rate

rate
Ma rate Tn

H
-

K
K

§ xtl
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Example 1. Revisit the Poisson process.

We already derived earlier P(t) = [Pxy(t)] for a
Poisson process X (t), t > 0, using

X (t) = max{n : ⌧n 6 t}.

We further have derived:

P 0(t) = P(t)D, D =

2

4
�� �

�� �
. . . . . .

3

5 ,

� > 0: arrival rate.
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Here we want to derive the inverse:

Proposition. If X (t) is a MJP with rate matrix

D =

2

4
�� �

�� �
. . . . . .

3

5 ,

then X (t) has the Poisson distribution, i.e.

Pxy(t) =

(
e��t (�t)

(y�x)

(y�x)! if y > x > 0,

0 otherwise.

It is another way of obtaining the Poisson process.
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Pf.: Recall

P 0
xy(t) =

X

z

Pxz(t)qzy .

Observe

(i) If y = 0, then

P 0
x0(t) = ��Px0(t), Px0(0) = �x0.

) Px0(t) = �x0e
��t .

(ii) If y � 1, then

P 0
xy(t) = �Px ,y�1(t)� �Pxy(t), Pxy(0) = �xy .

) Pxy(t) = e��t�xy +

Z t

0
e��(t�s)�Px ,y�1(s) ds.
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Claim #1. Pxy(t) = 0, 8 y < x . Indeed,

if y = 0 (x � 1), Px0(t) = 0.

if y = 1 (x � 2),

P 0
x ,1(t) = �Px ,0(t)� �Px ,1(t) = ��Px ,1(t), Px ,1(0) = 0.

) Px ,1(t) = 0.

If y = 2 (x � 3),

P 0
x ,2(t) = �Px ,1(t)� �Px ,2(t) = ��Px ,2(t), Px ,2(0) = 0.

) Px ,2(t) = 0.

Inductively,
Pxy (t) = 0, 8 x > y � 0.
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Claim #2. Pxy(t) = e��t (�t)
y�x

(y�x)! , 8 y � x � 0.

Indeed, let x � 0 be fixed.
For y = x ,

Pxx(t) = e��t +

Z t

0
e��(t�s)�Px ,x�1(s)| {z }

=0

ds = e��t .

For y = x + 1,

Px ,x+1(t) = e��t �x ,x+1| {z }
=0

+

Z t

0
e��(t�s) �Px ,x(s)| {z }

=e��s

ds

= · · · = e��t�t.

Inductively, we get the desired result.
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Exercise:

(1) Extend the above to

D =

2

6664

��0 �0

��1 �1

��2 �2
. . . . . .

3

7775
, (see. P.98).

It is a general pure birth process.

(2) Think about the more general BD process:

D =

2

6664

��0 �0 0 0 0
µ1 �(�1 + µ1) �1 0 0
0 µ2 �(�2 + µ2) �2 0

0 0 . . . . . . . . .

3

7775
.
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Example 2. Branching Process:

– A collection of particles

– each waiting to
either split into two particles with prob p
or vanish with prob (1� p)

– the waiting time is exp. r.v. with rate �.

X (t)
def
= be the no of particles at time t.

Q.: Find the rate matrix D.
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Lemma. Let ⇠1, · · · , ⇠n be independent r.v. having
exponential distribution with rate ↵1, · · · ,↵n, resp.
Then,

min{⇠1, · · · , ⇠n}
is an exponential r.v. with rate

↵1 + · · ·+ ↵n,

and for each k = 1, · · · , n

P(⇠k = min{⇠1, · · · , ⇠n}) =
↵k

↵1 + · · ·+ ↵n
.

If so, then
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Q =

2

664

1 0 · · ·
1� p 0 p

1� p 0 p
. . . . . . . . .

3

775 (Markov matrix for state transition),

D =

2

66664

0 0 0
(1� p)� �� p�

2�(1� p) �2� 2�p
3�(1� p) �3� 3�p

. . . . . . . . .

3

77775
(rate matrix).

Indeed,
• Let X (0) = x , and ⇠1, · · · , ⇠x be the time

:::
any

::::
one

::
of

:::
the

::::::::
particles

::::
splits

:::
or

:::::::::
disappears.

• At time ⌧1 = min{⇠1, · · · , ⇠x}, the no of particles will be x + 1 or
x � 1.

• By lemma above, ⌧1 is an exp. r.v. with rate �x :

:::
the

::::::
portion

:::
to

:::::
x + 1 =p·�x ;

:::
the

:::::::
portion

::
to

:::::
x � 1 =(1� p)·�x .
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rater rateln

AltR
§ xtl

Xnetheratetojump awayfrom
-r

train

.proh=tp
tranprokp

n.gs
Nil >

at
,due to one

due to  one

particle - particle

disappearing
splitting

�x = the rate to jump away from x

p · �x = the rate to jump to x + 1

(Birth rate)

(1� p) · �x = the rate to jump to x � 1

(Death rate)
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Proof of Lemma:

P(min{⇠1, · · · , ⇠n} > t)

= P(⇠1 > t, · · · , ⇠n > t)

= P(⇠1 > t)⇥ · · ·⇥ P(⇠n > t)

= e�↵1t ⇥ · · ·⇥ e�↵nt

= e�(↵1+···+↵n)t .

To consider P(⇠k = min{⇠1, · · · , ⇠n}), W.L.G. take
k = 1. Set

⌘ = min{⇠2, · · · , ⇠n}.
Then by above, ⌘ is an exp.r.v. with rate

�1
def
=

nX

y=2

↵y .
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P(⇠1 = min{⇠1, · · · , ⇠n})
= P(⇠1 6 ⌘)

=

ZZ

x6y

↵1e
�↵1x · �1e��1ydxdy

=

Z 1

0

✓Z 1

x
· · · dy

◆
dx

=
↵1

↵1 + �1

=
↵1

↵1 +
Pn

y=2 ↵y

=
↵1

↵1 + ↵2 + · · ·+ ↵n
.
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For instance, consider ⇠1, ⇠2 only:
P(⇠1 = min{⇠1, ⇠2}) = P(⇠1 6 ⇠2)

=

ZZ

x6y

↵1e
�↵1x · ↵2e

�↵2ydxdy

= · · · = ↵1

↵1 + ↵2
.

rater rateln

AltR
* xtl

Xkttheratetojump awayfrom
-r

train

.prob=tp
tranprokp

x. 12
Nil >

at
,due to one

due to  one

particle - particle

disappearing
splitting

Myth

)

f ry

xey
y=n

q
,

1 I
I

>

kc
{

, )
0 ×

as

×¥y=§dx fdy
...

R
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Remark: Suppose that we allow new particles to
immigrate into the system at rate ↵, and then give
succeeding generation.

⌘
def
= the first time a new particle arrives.

⌧1 = min{⇠1, · · · , ⇠x , ⌘}: the waiting time to change.

the rate of changing away from x particles = x�+ ↵.v

D =

2

664

�↵ ↵
(1� p)� �(�+ ↵) p�+ ↵

2(1� p)� �(2�+ ↵) 2p�+ ↵

0
. . . . . . . . .

3

775

See the textbook P92.
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Example 3. Queuing Model.

X (t)
def
= the no of persons on the line at time t

waiting for service.

⇢
arrival rate � : Poisson
service rate µ: exponential distr

There are several models for queueing.
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• M/M/1 queue:

M stands for memoyless,

1st M stands for waiting time for the arrival,

2nd M stands for waiting time for service,

The last number is for the number of servers.

D =

2

4
�� � 0 0
µ (��+ µ) � 0

0 . . . . . . . . .

3

5 .
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• M/M/k queue (k servers):

Note: µn =

⇢
nµ if n 6 k ,
kµ if n > k .

D =

2

6666666664

�� �
µ �(µ+ �) �

2µ �(2µ+ �) �
0

. . . . . . . . .
kµ �(kµ+ �) �

kµ �(kµ+ �) �0 . . . . . . . . .

3

7777777775

.
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• M/M/1 queue (1 servers):

D =

2

6664

�� �
µ �(µ+ �) �

2µ �(2µ+ �) �
. . . . . . . . .

3

7775

arrival rate = �, service rate = µ,

X (t)
def
= the no of customers on the line at time t.

(e.g., in the telephone exchange, this is a continuous-time

version of a previous example in the Markov chain).

Q.: Find Pxy(t) and lim
t!1

Pxy(t).
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Lemma. Let Y (t) be a Poisson process with rate
�. Then for 0 6 s 6 t (t fixed),

P(⌧1 6 s|Y (t) = 1) =
s

t
,

i.e. the density function is 1
t on [0, t], namely, given

that the arrival (one) is within [0, t], the arrival time
is a uniform distr on [0, t].

Note: This is a special case of Ex 6 with Y (t) = n.
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Pf.: For 0 6 s 6 t,

P(⌧1 6 s|Y (t) = 1)

= P(Y (s) = 1|Y (t) = 1)

=
P(Y (s) = 1,Y (t) = 1)

P(Y (t) = 1)

=
P(Y (s) = 1,Y (t)� Y (s) = 0)

P(Y (t) = 1)

=
e��s (�s)

1! · e��(t�s) (�(t�s))0

0!

e��t (�t)
1!

=
s

t
.
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Assume X (0) = x .

Y (t)
def
= the total no that arrived in time (0, t].

Let

X (t) = R(t) + N(t),

R(t)
def
= the no of the original x (at t = 0) that

are still being served,

N(t)
def
= the no of those from Y (t) that are still

being served.
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Fact 1. R(t), i.e., the no of the original x (at
t = 0) that are still being served,

is a binomial r.v.:

P(R(t) = k) =

✓
x
k

◆
(e�µt)k(1� e�µt)x�k ,

0  k  x ,

x = the total no at t = 0,

e�µt =
::::::::::::::::::::::
the success prob of still being served.
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Fact 2. Recall: Y (t) is the total no that arrived in
time (0, t]. We want to consider

P(N(t) = n|Y (t) = k).

Note: Fix t.
• Given Y (t) = k , N(t) should be a binomial r.v., but we
have to find “the success prob”:

pt = P(N(t) = 1|Y (t) = 1).

• For one that arrived at time s 2 (0, t], the prob of still
being served at time t is e�µ(t�s).

• By lemma, the arrival time s subject to one arrival in
(0, t] is uniform dist 1/t.

• Then the prob that he is still being served at time t is

pt =

Z t

0

1

t
· e�µ(t�s)ds =

1� e�µt

µt
.
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Hence,

P(N(t) = n|Y (t) = k) =

✓
k
n

◆
pnt (1� pt)

k�n,

0  n  k .

) P(N(t) = n) =
1X

k=n

P(Y (t) = k ,N(t) = n)

=
1X

k=n

P(Y (t) = k)P(N(t) = n|Y (t) = k)

= · · ·

=
(�tpt)n

n!
e��tpt . (see P101)

The same as in last Chap (P55).
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We conclude that (Recall X (t) = R(t) + N(t))

Pxy (t) = Px(X (t) = y)

=
min{x ,y}X

k=0

Px(R(t) = k)P(N(t) = y � k)

=
min{x ,y}X

k=0

✓
x
k

◆
e�kµt(1� e�µt)x�k (�tPt)y�ke��tpt

(y � k)!
.

For t ! 1, all the terms vanish except k = 0:

lim
t!1

Pxy (t) = e��/µ (�/µ)
y

y !
(tpt ! 1/µ as t ! 1).

Note: Compare it with the “telephone exchange” example
last chapter.
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§3.5 Limiting properties of MJP

The definitions of

– stationary distribution (SD)

– recurrence or transience

– etc

are the same as Markov chain.

Let us only sketch some of them.
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• SD:

Let
X (t), t > 0,

be a MJP.

Def.: ⇡ is called a SD if

(i) (distribution)

⇡(y) > 0, 8 y 2 S ;
X

y

⇡(y) = 1.

(ii) (stationary)
X

x2S

⇡(x)Pxy(t) = ⇡(y), 8 y 2 S , 8 t > 0.
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How to find the SD ⇡?

In fact,

0 =

 
X

x

⇡(x)Pxy(t)

!0

=
X

x

⇡(x)P 0
xy(t).

(Note: there is a technical point to interchange
P
x

and (·)0

for the infinite sum)

Let t ! 0+, then
P
x
⇡(x)qxy = 0, i.e. in matrix

form
⇡D = 0,

where D = [qxy ] is the rate matrix. The converse is
also true.
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Example. Find the SD of the birth and death
process with rate

D =

2

6664

��0 �0

µ1 �(�1 + µ1) �1

µ2 �(�2 + µ2) �2
. . . . . . . . .

3

7775
.
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Sol.: Let ⇡ = (x0, x1, · · · ). ⇡D = 0 is

[x0, x1, · · · ]

2

4
��0 �0

µ1 �(µ1 + �1) �1
. . . . . . . . .

3

5 = [0, 0, · · · ].

Hence⇢
��0x0 + µ1x1 = 0,
�k�1xk�1 � (�k + µk)xk + µk+1xk+1 = 0, k � 1.

Note: For k � 1,

�kxk � µk+1xk+1 = �k�1xk�1 � µkxk
= · · · = �0x0 � µ1x1 = 0.

) xk =
�k�1

µk
xk�1 = · · · = �k�1

µk
· �k�2

µk�1
· · · �0

µ1
x0,

) xk = �kx0, �k
def
=

�0 · · ·�k�1

µ1 · · ·µk
(k � 1).
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Formally,
1P
k=0

xk = (
1P
k=0

�k)x0 (Convention: �0 = 1).

Then,

• if �
def
=

1P
k=0

�k < 1, then choosing x0 =
1
�
,

⇡ =

✓
1

�
,
�1
�
,
�2
�
, · · ·

◆
is a SD.

• if
1P
k=0

�k = 1, then, no SD!
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Exercise: Use this to check the queue models:

M/M/1, M/M/2, M/M/1.

For instance, M/M/1 case:
⇢
�k = � (k > 0)
µk = kµ (k > 1)

) �k =
⇣
�0

µ1

⌘
· · ·
⇣
�k�1

µk

⌘
= �

k

k!µk .

X

k�0

�k = e�/µ.

) ⇡ =

0

@e�
�
µ , e�

�
µ
�

µ
,
e�

�
µ (�

µ
)2

2!
, · · · ,

e�
�
µ (�

µ
)k

k!
, · · ·

1

A .

“the same as the one by looking for the limit
distribution lim

t!1
Pxy(t)”
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• Recurrence and transience.

⌧1
def
= the first time to jump

Ty
def
= min{t > ⌧1 : X (t) = y} (hitting time)

(= 1 if X (t) 6= y , 8 t > ⌧1)

⇢xy
def
= Px(Ty < 1)

(the prob that the process starting from x eventually hits y)

Recurrent: ⇢yy = 1.
Transient: ⇢yy < 1.
Process is irreducible: ⇢xy > 0, 8 x , y 2 S .
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Let Q be the matrix in the MJP, i.e.

Px(⌧1 6 t,X (⌧1) = y) = Fx(t)Qxy , y 6= x ,

Fx(t) = 1� e�qx t .

Assume irreducible, i.e. qx > 0, 8 x . Then

P(X (⌧1) = y |X (0) = x) = Qxy(=
qxy
qx

), 8 y 6= x .

Let ⌧0 = 1, and

Zn = X (⌧n), n = 0, 1, 2, · · ·

(Only count the jump each time, but ignore the
length of waiting time).
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Then,

{Zn}1n=0 is a Markov chain with Q as tran-
sition matrix.

Note:

Ty
def
= inf{t > ⌧1 : X (t) = y} < 1

i↵

T 0
y

def
= inf{n > 1 : Zn = y} < 1 (as Markov chain).

) ⇢xy for {Zn}1n=0 is the same as ⇢xy for {X (t)}t>0.

)To check recurrent/transience,

we need only consider Q!
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Example: In the birth & death process

Q =

2

6664

0 1
µ1

�1+µ1
0 �1

�1+µ1
µ2

�2+µ2
0 µ2

�2+µ2
. . . . . . . . .

3

7775
def
=

2

6664

0 1
q1 0 p1

q2 0 p2
. . . . . . . . .

3

7775
.

It follows from Chapter 1 (P33) that the chain is
recurrent i↵

1X

n=1

µ1 · · ·µn

�1 · · ·�n
=

1X

n=1

q1 · · · qn
p1 · · · pn

= 1.
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• Long-run behavior.

Let mx
def
= Ex(Tx) (the mean return time).

– Null recurrent: mx = 1
– Positive recurrent: mx < 1. In this case

⇡(x) =
1

qxmx
. (⇤)

Intuitive Proof of (⇤):
– In [0, t] for large t, the process will visit x for t

mx

times and the average time staying at x (waiting
time to jump way) per visit is 1/qx .

– The total time spent in x during [0, t] is t
mx

· 1
qx
.

– The proportion of time spent in x is 1
qxmx

.
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Note: Any MJP is aperiodic.

For an irreducible, positive recurrent MJP,

lim
t!1

Pxy(t) = ⇡(y) =
1

qymy
, x , y 2 S .
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The end of lectures
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