Chapter 3:

Markov Jump Process

§3.1 Introduction

- Jump process.

Recall: a MC (discrete-time stochastic process with the Markovian property):

$$
X(n) \in S, \quad n=0,1,2, \cdots .
$$

S : finite or countably infinite,

$$
\text { e.g. } S=\{0,1, \ldots, N\}(N \leq \infty) .
$$

Consider a continuous-time stochastic process:

$$
X(t) \in S, \quad 0 \leq t<\infty,
$$

S : finite or countably infinite.

$-\tau_{1}, \tau_{2}, \cdots$: the waiting time to jump (random).

- $X\left(\tau_{1}\right), X\left(\tau_{2}\right), \cdots:$ where to jump (random).
- Always assume: $\lim _{n \rightarrow \infty} \tau_{n}=\infty$ (No blow-up!)
- Probability structure.

Def.: $x \in S$ is absorbing if
$" X(t)=x$ for some $t \geqslant 0 " \Rightarrow " X(s)=x, \forall s \geqslant t "$.

Given a non-absorbing state $X(0)=x \in S$, we need to know two things:
(i) $F_{x}(t), t \geqslant 0$: the distribution of the waiting time τ_{1}. Note:

$$
F_{x}(t)=P_{x}\left(\tau_{1} \leq t\right)
$$

(ii) $Q_{x y}$: the transition prob to jump from a state x to another state $y(\neq x)$:

$$
Q_{x x}=0, \quad \sum_{y \in S} Q_{x y}=1
$$

(If x is absorbing, $Q_{x y}=\delta_{x y}=\left\{\begin{array}{l}1, \text { for } x=y, \\ 0, \text { otherwise. }\end{array}\right.$)

For non-absorbing x, we assume:

$$
P_{x}\left(\tau_{1} \leqslant t, X\left(\tau_{1}\right)=y\right)=P_{x}\left(\tau_{1} \leqslant t\right) Q_{x y}
$$

i.e.
τ_{1} (the waiting time to jump) and
$X\left(\tau_{1}\right)$ (jump to where) are independent!

Similar to the MC (discrete-time), our concern is to determine the transition function:
$P_{x y}(t) \stackrel{\text { def }}{=} P(X(t)=y \mid X(0)=x)=P_{x}(X(t)=y)$,
i.e., the prob that the process starting at x will be at y at time $t \geqslant 0$.

Note:
(i) $\sum_{y} P_{x y}(t)=1, P_{x y}(0)=\delta_{x y}$.
(ii) If initial distribution is known, for instance, it is given by $\pi_{0}(x), x \in S$, then

$$
P(X(t)=y)=\sum_{x \in S} \pi_{0}(x) P_{x y}(t)
$$

or $\pi_{t}=\pi_{0} P(t)$ in matrix form.

- Markov property:

$$
\begin{aligned}
& P\left(X(t)=y \mid X\left(s_{1}\right)=x_{1}, \cdots, X\left(s_{n}\right)=x_{n}, X(s)=x\right) \\
& \quad=P(X(t)=y \mid X(s)=x) \\
& \forall 0 \leqslant s_{1} \leqslant \cdots \leqslant s_{n} \leqslant s \leqslant t, \forall x_{1}, \cdots, x_{n}, x, y \in S
\end{aligned}
$$

Note:

- We always assume the process is time-homogeneous:

$$
\begin{gathered}
P(X(t)=y \mid X(s)=x)=P(X(t-s)=y \mid X(0)=x), \\
\forall 0 \leqslant s \leqslant t, \forall x, y \in S .
\end{gathered}
$$

Therefore

$$
P(X(t)=y \mid X(s)=x)=P_{x y}(t-s) .
$$

- A Markov jump process (MJP) $\stackrel{\text { def }}{=}$ a continuous-time jump process with the Markovian property.

Now, we always consider the MJP.
Q.: How to determine $F_{x}(t)=P_{x}\left(\tau_{1} \leq t\right)$?

Recall that $F_{x}(t)$ is the distribution of τ_{1} (the waiting time for a jump to occur!).

To show: τ_{1} is an exponential rv with density:

$$
f(t)=\lambda e^{-\lambda t}, \quad t \geq 0 ; \quad \lambda \stackrel{\text { def }}{=} \frac{1}{E\left(\tau_{1}\right)}
$$

Hence:

$$
F_{x}(t)=P\left(\tau_{1} \leq t\right)=\int_{-\infty}^{t} f(s) d s=1-e^{-\lambda t}, t \geq 0
$$

Def.: Let τ be a r.v. taking values in $[0, \infty)$. Then τ is said to be memoryless if

$$
P(\tau>s+t \mid \tau>s)=P(\tau>t), \quad \forall s, t \geqslant 0
$$

(i.e., after waiting for time s, the prob for waiting for another time t has no memory that it already waits for time s.)
e.g. Model: Wait for an unreliable bus driver. Then, the waiting time is a memoryless r.v.:
"If we have been waiting for s units of time then the prob we must wait t more units of time is the same as if we have not waited at all!"

Proposition. Let τ be a memoryless r.v. Then τ is an exponential r.v., and the density is given by

$$
\lambda e^{-\lambda t}, t \geqslant 0 ; \quad \lambda=1 / E(\tau)
$$

Pf.: Let $G(t) \stackrel{\text { def }}{=} P(\tau>t)$. As τ is memoryless,

$$
\begin{aligned}
G(t)=P(\tau>t) & =P(\tau>s+t \mid \tau>s) \\
& =\frac{P(\tau>s+t)}{P(\tau>s)}=\frac{G(s+t)}{G(s)}
\end{aligned}
$$

i.e.

$$
G(s+t)=G(s) G(t), \quad \forall s, t \geqslant 0 .
$$

Assuming G is differentiable,

$$
\begin{aligned}
G^{\prime}(t) & =\lim _{h \rightarrow 0_{+}} \frac{G(t+h)-G(t)}{h} \\
& =\lim _{h \rightarrow 0_{+}} \frac{G(t) G(h)-G(t)}{h} \\
& =G(t) \lim _{h \rightarrow 0_{+}} \frac{G(h)-1}{h} \\
& \stackrel{\text { def }}{=} G(t) \alpha .
\end{aligned}
$$

Note: $G(0)=P(\tau>0)=1 . \therefore G(t)=e^{\alpha t}$.
Note: $G(t)=P(\tau>t)$ is decreasing. $\therefore \alpha<0$. Set $\alpha=-\lambda(\lambda>0)$. The density function is

$$
f(t)=(1-G(t))^{\prime}=\lambda e^{-\lambda t}
$$

Proposition. Let $X(t), t \geqslant 0$ be a MJP. For a non-absorbing state $x \in S$, letting $X(0)=x$,
$\tau_{x} \stackrel{\text { def }}{=} \inf \{t>0: X(t) \neq x\} . \quad$ (first time to jump)
Then, τ_{x} is a memoryless r.v.
Pf.:

$$
\begin{aligned}
& P\left(\tau_{x}>s+r \mid \tau_{x}>s\right) \\
& =P(X(t)=x, 0 \leqslant t \leqslant s+r \mid X(t)=x, 0 \leqslant t \leqslant s) \\
& =P(X(t)=x, s \leqslant t \leqslant s+r \mid X(t)=x, 0 \leqslant t \leqslant s) \\
& =P(X(t)=x, s \leqslant t \leqslant s+r \mid X(s)=x) \text { (Markovian) } \\
& =P(X(t)=x, 0 \leqslant t \leqslant r \mid X(0)=x) \text { (time-homog) } \\
& =P\left(\tau_{x}>r\right) .
\end{aligned}
$$

Remarks:

- For a MJP, as τ_{x} is memoryless:

$$
P\left(\tau_{x}>s+r \mid \tau_{x}>s\right)=P\left(\tau_{x}>r\right)
$$

it looks like that the process starts from s.

- Set $q_{x} \stackrel{\text { def }}{=} 1 / E\left(\tau_{x}\right)$. Then, τ_{x} has an exponential density given by $q_{x} e^{-q_{x} t}(t \geq 0)$.

§3.2 Poisson process

We shall give the definition of Poisson process in terms of the waiting time.

Setup:

- Let $\xi_{n} \sim \xi, n=1,2, \cdots$, be i.i.d. exp. r.v. with parameter λ :

$$
P(\xi>t)=e^{-\lambda t}, \quad \lambda=1 / E(\xi)
$$

- Define $\tau_{0}=0$, and

$$
\tau_{n} \stackrel{\text { def }}{=} \xi_{1}+\xi_{2}+\cdots+\xi_{n}, \quad n=1,2, \cdots
$$

For $n=1,2, \cdots$,
$\xi_{n} \sim \xi$: the waiting time for one arrival. τ_{n} : the waiting time for the $n^{t h}$-arrival.

For $t \geqslant 0$,

$$
X(t) \stackrel{\text { def }}{=} \max \left\{n \geqslant 0, \tau_{n} \leqslant t\right\}
$$

i.e., the no of arrival in $[0, t]$.

Then, we get a jump process:

$$
X(t) \in\{0,1,2, \cdots\}, \quad t \geqslant 0
$$

Q.:

- What's the density of $X(t)$? (Poisson with rate λt !)
- Is $X(t)$ a MJP? (YES!)

Theorem. $X(t)$ is Poisson with $E(X(t))=\lambda t$:

$$
P(X(t)=n)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}, \quad n=0,1,2 \cdots
$$

Pf.: By definition,
$\{X(t)=n\}=\left\{\tau_{n} \leqslant t<\tau_{n+1}\right\}=\left\{\tau_{n+1}>t\right\} \backslash\left\{\tau_{n}>t\right\}$. Hence,

$$
\begin{equation*}
P(X(t)=n)=P\left(\tau_{n+1}>t\right)-P\left(\tau_{n}>t\right) \tag{*}
\end{equation*}
$$

- $n=0$:

$$
P(X(t)=0)=P\left(\tau_{1}>t\right)-0=P\left(\xi_{1}>t\right)=e^{-\lambda t}
$$

- To show:

$$
\begin{gather*}
P\left(\tau_{n}>t\right)=e^{-\lambda t} \sum_{k=0}^{n-1} \frac{(\lambda t)^{k}}{k!} \tag{**}\\
n=1,2, \cdots
\end{gather*}
$$

If so, substituting $(* *)$ into $(*)$ gives the theorem. Proof of $(* *)$ by induction: $n=1: P\left(\tau_{1}>t\right)=P\left(\xi_{1}>t\right)=e^{-\lambda t} .(* *)$ holds.

Letting $(* *)$ hold for $n \geq 1$, we need to show that $(* *)$ is true for $n+1$. Indeed,

$$
\begin{aligned}
& P\left(\tau_{n+1}>t\right) \\
& =P\left(\tau_{n}+\xi_{n+1}>t\right) \\
& =P\left(\xi_{n+1}>t\right)+P\left(\xi_{n+1} \leq t, \tau_{n}+\xi_{n+1}>t\right) \\
& =e^{-\lambda t}+\int_{0}^{t} \lambda e^{-\lambda s} \cdot P\left(\tau_{n}>t-s\right) d s \text { (explain later) } \\
& =e^{-\lambda t}+\int_{0}^{t} \lambda e^{-\lambda s} \cdot \sum_{k=0}^{n-1} e^{-\lambda(t-s)} \frac{\left(\lambda(t-s)^{k}\right)}{k!} d s \\
& \quad(\text { Use induction assumption!) } \\
& =e^{-\lambda t}+e^{-\lambda t} \sum_{k=0}^{n-1} \frac{\lambda^{k+1}}{k!} \cdot \int_{0}^{t}(t-s)^{k} d s \\
& =e^{-\lambda t}+e^{-\lambda t} \sum_{k=0}^{n-1} \frac{\lambda^{k+1}}{k!} \cdot \frac{t^{k+1}}{(k+1)} \\
& =e^{-\lambda t}+e^{-\lambda t} \sum_{k=0}^{n-1} \frac{(\lambda t)^{k+1}}{(k+1)!}=e^{-\lambda t} \sum_{k=0}^{n} \frac{(\lambda t)^{k}}{k!}
\end{aligned}
$$

Note (See Durrett P93-103):
Let X, Y be independent with densities $f(\cdot), g(\cdot)$ over $[0, \infty)$, resp. Then,

$$
\begin{aligned}
P(X & <t, X+Y>t)=\int_{0}^{t} \int_{t-x}^{\infty} f(x) g(y) d y d x \\
& =\int_{0}^{t} f(x) \int_{t-x}^{\infty} g(y) d y d x=\int_{0}^{t} f(x) P(Y>t-x) d x .
\end{aligned}
$$

Remarks:

- Note:

$$
\begin{aligned}
P(X(0) & =k)=\delta_{0 k}= \begin{cases}1 & k=0 \\
0 & \text { otherwise }\end{cases} \\
\therefore P(X(t)=n) & =\sum_{k=0}^{\infty} P(X(0)=k) P(X(t)=n \mid X(0)=k) \\
& =\sum_{k=0}^{\infty} \delta_{0 k} P_{k n}(t) \\
& =P_{0 n}(t) \\
\therefore P_{0 n}(t) & =e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}, \quad n=0,1,2 \cdots
\end{aligned}
$$

- $E(X(t))=\lambda t$ is the expected no of arrivals in $[0, t] . \lambda$ is the arrival rate.

Corollary. The Poisson process $\{X(t)\}_{t \geqslant 0}$ with rate λt satisfies:
(i) $X(0)=0$.
(ii) For $0<s<t, X(t)-X(s)$ has Poisson distribution with mean $\lambda(t-s)$, and is independent of $X(s)$.
(iii) For $0 \leqslant t_{1} \leqslant \cdots \leqslant t_{n}$,

$$
X\left(t_{2}\right)-X\left(t_{1}\right), \cdots, X\left(t_{n}\right)-X\left(t_{n-1}\right)
$$

are independent.
Also, $\{X(t)\}_{t \geqslant 0}$ satisfies the Markov property with

$$
E(X(t))=\lambda t, \quad \operatorname{Var}(X(t))=\lambda t
$$

Remark: Very often, (i)(ii)(iii) are also used as the definition of Poisson process!

IDEA of Proof:

- (i): Obvious.
- (ii): For $0<s<t$,

$$
\begin{aligned}
& P(X(t)-X(s)=n) \\
& =\sum_{m=0}^{\infty} P(X(s)=m, X(t)=n+m) \\
& =\sum_{m=0}^{\infty} P(X(s)=m) P(X(t)=n+m \mid X(s)=m) \\
& =\sum_{m=0}^{\infty} P(X(s)=m) P_{m, n+m}(t-s) \\
& =\sum_{m=0}^{\infty} P(X(s)=m) P_{0, n}(t-s) \\
& =P_{0, n}(t-s) \\
& =e^{-\lambda(t-s)} \frac{[\lambda(t-s)]^{n}}{n!} .
\end{aligned}
$$

$X(t)-X(s)$ is independent of $X(s)$ means
$P(X(t)-X(s)=n, X(s)=m)=P(X(t)-X(s)=n) P(X(s)=m)$, equivalently

$$
P(X(t)-X(s)=n \mid X(s)=m)=P(X(t)-X(s)=n) .
$$

Indeed, note
LHS $=P(X(t)=m+n \mid X(s)=m)=P_{m, m+n}(t-s)=P_{0, n}(t-s)$.

- (iii): Omit the proof. Intuitively clear (See P94-95 in Durrent Chapter 3)
- For Markov property: Check

$$
\begin{gathered}
P\left(X(t)=y \mid X\left(t_{1}\right)=x_{1}, \cdots, X\left(t_{n}\right)=x_{n}, X(s)=x\right) \\
=P(X(t)=y \mid X(s)=x)
\end{gathered}
$$

for any $0 \leqslant t_{1}<t_{2}<\cdots<t_{n}<s \leqslant t$.

Sum: We see that the Poisson process

$$
X(t), \quad t \geq 0
$$

turns out to be a MJP (continuous-time JP with the Markov property) with $X(0)=0$ and the transition function:

For any $t \geq 0$ and any $x, y \in S=\{0,1,2 \cdots\}$,

$$
P_{x y}(t)= \begin{cases}0 & \text { if } x>y, \\ =P_{0, y-x}(t)=e^{-\lambda t} \frac{(\lambda t)^{y-x}}{(y-x)!} & \text { if } x \leq y .\end{cases}
$$

Here, $\lambda>0$ is the arrival rate.

§3.3 Basic properties of MJP

Let $\{X(t)\}_{t \geqslant 0}$ be a MJP with

$$
P_{x y}(t)=P(X(t)=y \mid X(0)=x) .
$$

Proposition. (Chapman-Kolmogorov equation)

$$
P_{x y}(t+s)=\sum_{z} P_{x z}(t) P_{z y}(s) .
$$

In matrix form, letting $P(t)=\left[P_{x y}(t)\right]$, the above is

$$
P(t+s)=P(t) P(s) \text {. }
$$

Remark: It is similar to the discrete case

$$
P^{m+n}(x, y)=\sum_{z \in s} P^{m}(x, z) P^{n}(z, y)
$$

Pf.: Note:

$$
P_{x y}(t+s)=\sum_{z} P_{x}(X(t)=z, X(t+s)=y)
$$

and

$$
\begin{aligned}
& P_{x}(X(t)=z, X(t+s)=y) \\
& =P_{x}(X(t)=z) P_{x}(X(t+s)=y \mid X(t)=z) \\
& =P_{x}(X(t)=z) P(X(t+s)=y \mid X(0)=x, X(t)=z) \\
& =P_{x}(X(t)=z) P(X(s)=y \mid X(0)=z) \text { (Markov+Time-Homg) } \\
& =P_{x z}(t) P_{z y}(s) .
\end{aligned}
$$

It follows that

$$
P_{x y}(t+s)=\sum_{z} P_{x z}(t) P_{z y}(s) .
$$

Note: Assume $P(t)$ is differentiable in $[0, \infty)$, and

$$
D \stackrel{\text { def }}{=} P^{\prime}(0) .
$$

Then, from the C.-K. equation

$$
P(t+s)=P(t) P(s)
$$

one has

$$
\begin{aligned}
& \left.\frac{d}{d s}\right|_{s=0}(\cdot) \Rightarrow P^{\prime}(t)=P(t) D \\
& \left.\frac{d}{d t}\right|_{t=0}(\cdot) \Rightarrow P^{\prime}(s)=D P(s) \\
\therefore & P^{\prime}(t)=P(t) D=D P(t), \quad t \geq 0 .
\end{aligned}
$$

Fact I.

$$
D=P^{\prime}(0) \stackrel{\text { def }}{=}\left[q_{x y}\right]_{x, y \in S}=\left[\begin{array}{c}
-+++\cdots \\
+-++\cdots \\
++- \\
\vdots \\
\vdots
\end{array} \ddots \cdots \cdot \ddots .\right.
$$

called the rate matrix.

$$
+: \text { entry } \geq 0 ; \quad-: \text { entry } \leq 0 .
$$

Indeed, note:

$$
\begin{aligned}
& q_{x y}=P_{x y}^{\prime}(0) \\
& =\lim _{h \rightarrow 0+} \frac{P_{x y}(h)-P_{x y}(0)}{h} \\
& =\lim _{h \rightarrow 0+} \frac{P(X(h)=y \mid X(0)=x)-P(X(0)=y \mid X(0)=x)}{h} \\
& =\left\{\begin{array}{l}
\lim _{h \rightarrow 0+} \frac{P(X(h)=y \mid X(0)=x)-1}{h}(\leqslant 0) \text { if } x=y, \\
\lim _{h \rightarrow 0+} \frac{P(X(h)=y \mid X(0)=x)-0}{h}(\geqslant 0) \text { if } x \neq y .
\end{array}\right.
\end{aligned}
$$

Fact II. Each row sum of D is zero:

$$
\begin{equation*}
\sum_{y \in S} q_{x y}=0, \quad \forall x \in S \tag{*}
\end{equation*}
$$

Indeed, note:
$\sum_{y \in S} P_{x y}(t)=1, \forall t \geq 0 .\left.\therefore \frac{d}{d t}\right|_{t=0} \Rightarrow \sum_{y \in S} P_{x y}^{\prime}(0)=0$.

Observe: $(*)$ means $q_{x x}+\sum_{y \neq x} q_{x y}=0$, that is,

Recall:

- $E\left(\tau_{x}\right)$ is the mean waiting time to jump away from x, so $q_{x}=\frac{1}{E\left(\tau_{x}\right)}$ is the rate of change. Note:

$$
q_{x}=0 \text { iff } E\left(\tau_{x}\right)=\infty, \text { iff } x \text { is absorbing. }
$$

- $Q=\left[Q_{x y}\right]$ is the Markov matrix introduced before. $Q_{x x}=1$ iff x is absorbing. For non-absorbing x,

$$
Q_{x x}=0, \quad \sum_{y \neq x} Q_{x y}=1
$$

and in such case, $Q_{x y}$ is understood to be the proportion that the chain will jump to y from x.

Main Theorem:

$$
-q_{x x}=q_{x} ; \quad q_{x y}=q_{x} Q_{x y} \text { for } y \neq x
$$

Pf.: Case x is absorbing $\left(q_{x}=0, Q_{x y}=\delta_{x y}\right)$:

$$
P_{x y}(t)=\delta_{x y} . \quad \therefore q_{x y}=P_{x y}^{\prime}(0)=0
$$

Conclusion is then TRUE.
Case x is non-absorbing:

$$
\begin{aligned}
P_{x y}(t)= & P_{x}(X(t)=y) \\
= & \underbrace{P_{x}\left(\tau_{x}>t, X(t)=y\right)}_{\text {I: no jump yet }} \\
& +\underbrace{P_{x}\left(\tau_{x} \leqslant t, X(t)=y\right)}_{\text {II: it has jumped }} .
\end{aligned}
$$

For I (no jump yet):

$$
I=P_{x}\left(\tau_{x}>t, X(t)=y\right)
$$

$$
= \begin{cases}0 & \text { for } y \neq x, \\ P_{x}\left(\tau_{x}>t\right)=e^{-q_{x} t} & \text { for } y=x\end{cases}
$$

$$
=\delta_{x y} e^{-q_{x} t} .
$$

For II (it has jumped):

$$
\begin{aligned}
& \\
I I & =P_{x}\left(\tau_{x} \leqslant t, X(t)=y\right) \\
& =\sum_{z \neq x} P_{x}\left(\tau_{x} \leqslant t, X\left(\tau_{x}\right)=z, X(t)=y\right) \\
& =\sum_{z \neq x} \int_{0}^{t} P_{x}\left(\tau_{x}=s\right) Q_{x z} P_{z y}(t-s) d s \\
= & \sum_{z \neq x} \int_{0}^{t} q_{x} e^{-q_{x} s} Q_{x z} P_{z y}(t-s) d s .
\end{aligned}
$$

$\therefore P_{x y}(t)=I+I I$

$$
\begin{aligned}
& =\delta_{x y} e^{-q_{x} t}+\sum_{z \neq x} \int_{0}^{t} q_{x} e^{-q_{x} s} Q_{x z} P_{z y}(t-s) d s \\
& =\delta_{x y} e^{-q_{x} t}+q_{x} e^{-q_{x} t} \sum_{z \neq x} \int_{0}^{t} Q_{x z} P_{z y}(u) e^{q_{x} u} d u
\end{aligned}
$$

$$
\text { (Change of variable: } t-s=u \text {) }
$$

$$
\begin{aligned}
& \therefore P_{x y}^{\prime}(t)=-q_{x} P_{x y}(t)+q_{x} \sum_{z \neq x} Q_{x z} P_{z y}(t) \\
& \therefore P_{x y}^{\prime}(0)=-q_{x} P_{x y}(0)+q_{x} \sum_{z \neq x} Q_{x z} P_{z y}(0) \\
& \quad=-q_{x} \delta_{x y}+q_{z} \sum_{z \neq x} Q_{x z} \delta_{z y} \\
& \quad=-q_{x} \delta_{x y}+q_{x} Q_{x y} \\
& \quad= \begin{cases}-q_{x}+0=-q_{x} & \text { for } y=x, \\
q_{x} Q_{x y} & \text { for } y \neq x .\end{cases}
\end{aligned}
$$

Example 1. Poisson process with rate λt :

$$
\begin{aligned}
P_{0 n}(t) & =P(X(t)=n \mid X(0)=0)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}, \quad n=0,1,2, \cdots \\
P(t) & =\left[\begin{array}{cccc}
e^{-\lambda t} & e^{-\lambda t} \frac{\lambda t}{1!} & e^{-\lambda t} \frac{(\lambda t)^{2}}{2!} & \cdots \\
0 & e^{-\lambda t} & e^{-\lambda t} \frac{\lambda t}{1!} & \cdots \\
0 & 0 & \ddots & \ddots \\
0 & 0 & 0 & \ddots
\end{array}\right] \text { (transition function) }
\end{aligned}
$$

Then
$D=P^{\prime}(0)=\left[\begin{array}{ccccc}-\lambda & \lambda & 0 & \cdots & \cdots \\ 0 & -\lambda & \lambda & 0 & \cdots \\ 0 & 0 & \ddots & \ddots & \ddots\end{array}\right], \quad Q=\left[\begin{array}{ccccc}0 & 1 & 0 & \cdots & \cdots \\ 0 & 0 & 1 & \cdots & \cdots \\ 0 & 0 & \ddots & \ddots & \ddots\end{array}\right]$.

Example 2. Car check up with 3 operations in sequence:
(1) Engine time up \rightarrow (2) air condition repair \rightarrow
(3) break system replacement \rightarrow (4) leave.

Assume that this is a MJP with the mean time in each operation 1.2, 1.5, 2.5 hours.
$S=\{1,2,3,4\}$. The rate of moving up to the next stage is $\frac{1}{1.2}, \frac{1}{1.5}, \frac{1}{2.5}$. Thus,

$$
D=\left[\begin{array}{cccc}
-\frac{1}{1.2} & \frac{1}{1.2} & 0 & 0 \\
0 & -\frac{1}{1.5} & \frac{1}{1.5} & 0 \\
0 & 0 & -\frac{1}{2.5} & \frac{1}{2.5} \\
0 & 0 & 0 & 0
\end{array}\right], \quad Q=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Further questions:
(a) What is the prob that after 4hour the car is in step (3)?

That is to find $P(X(4)=3 \mid X(0)=1)$.
(b) What is the prob that after 4hour the car is still in the shop? That is to find $P(X(4)=4 \mid X(0)=1)$.
Generally, need to find

$$
P(t)=\left[\begin{array}{llll}
P_{11}(t) & P_{12}(t) & P_{13}(t) & P_{14}(t) \\
P_{21}(t) & P_{22}(t) & P_{23}(t) & P_{24}(t) \\
P_{31}(t) & P_{32}(t) & P_{33}(t) & P_{34}(t) \\
P_{41}(t) & P_{42}(t) & P_{43}(t) & P_{44}(t)
\end{array}\right]
$$

Method: Solve the linear ODE system:

$$
P^{\prime}(t)=D P(t), \quad P(0)=1
$$

Example 3. A barbar shop with two barbars and two waiting chains. Customers arrives at a rate 5 per hr. Each barbar serves at a rate 2 per hr. If the waiting chains are full the customer will leave.
$X(t) \stackrel{\text { def }}{=}$ the no of customers in the shop.

$$
S=\{0,1,2,3,4\}
$$

$$
D=\begin{gathered}
0 \\
0 \\
1 \\
2 \\
4
\end{gathered}\left[\begin{array}{ccccc}
-5 & 5 & 0 & 0 & 0 \\
2 & -7 & 5 & 0 & 0 \\
0 & 4 & -9 & 5 & 0 \\
0 & 0 & 4 & -9 & 5 \\
0 & 0 & 0 & 4 & -4
\end{array}\right], Q=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
\frac{2}{7} & 0 & \frac{5}{7} & 0 & 0 \\
0 & \frac{4}{9} & 0 & \frac{5}{9} & 0 \\
0 & 0 & \frac{4}{9} & 0 & \frac{5}{9} \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Further questions:

(a) In the long run, what is the prob to have one customer, two customers, etc.? That is to find

$$
\lim _{t \rightarrow \infty} P(X(t)=k), \quad k \in S
$$

(b) Find the expected time for it to be full, counting from the opening time. That is to find

$$
E\left(T_{y}\right)
$$

where $T_{y}=\inf \{t: X(t)=y, X(0)=0\}$.

How to solve:

$$
P^{\prime}(t)=D P(t), \quad P(0)=I
$$

Case when S is finite:

$$
P(t)=e^{t D} \stackrel{\text { def }}{=} \sum_{n=0}^{\infty} \frac{(t D)^{n}}{n!} \quad \text { (convergent!). }
$$

Informal Proof: At $t=0, e^{t D}=e^{0 D}=1$
(Convention: $0^{0}=1, D^{0}=l$), and for $t>0$,

$$
\begin{aligned}
\left(e^{t D}\right)^{\prime} & =\sum_{n=1}^{\infty} \frac{t^{n-1} D^{n}}{(n-1)!} \\
& =D\left[\sum_{n=1}^{\infty} \frac{(t D)^{n-1}}{(n-1)!}\right] \\
& =D e^{t D} .
\end{aligned}
$$

Example. Let $D=\left[\begin{array}{cc}-1 & 1 \\ 2 & -2\end{array}\right]$. Q.: Find $P(t)$.
Sol.: Look for $D=Q \operatorname{diag}\left\{\lambda_{1}, \lambda_{2}\right\} Q^{-1}$.
(i) Eigenvalues: $\operatorname{det}(D-\lambda I)=0$,
i.e., $0=\operatorname{det}\left[\begin{array}{cc}-1-\lambda & 1 \\ 2 & -2-\lambda\end{array}\right]=(-1-\lambda)(-2-\lambda)-2$,
i.e., $\lambda^{2}+3 \lambda=0 . \therefore \lambda=0,-3$.
(ii) Eigenvectors: $\lambda=0: D-\lambda I=\left[\begin{array}{cc}-1 & 1 \\ 2 & -2\end{array}\right], e_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. $\lambda=-3: D-\lambda I=\left[\begin{array}{ll}2 & 1 \\ 2 & 1\end{array}\right], e_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
Let $Q \stackrel{\text { def }}{=}\left[e_{1}, e_{2}\right]=\left[\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right], Q^{-1}=\left[\begin{array}{cc}\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3}\end{array}\right]$. Then,

$$
\left[\begin{array}{cc}
0 & 0 \\
0 & -3
\end{array}\right]=Q^{-1} D Q, \quad \text { i.e., } D=Q\left[\begin{array}{cc}
0 & 0 \\
0 & -3
\end{array}\right] Q^{-1} \text {. }
$$

Hence

$$
\begin{aligned}
P(t)= & e^{t D}=\sum_{n=0}^{\infty} \frac{(t D)^{n}}{n!}=Q\left(\sum_{n=0}^{\infty} \frac{\left(t\left[\begin{array}{cc}
0 & 0 \\
0 & -3
\end{array}\right]\right)^{n}}{n!}\right) Q^{-1} \\
= & Q\left[\begin{array}{cc}
\sum_{n=0}^{\infty} \frac{0^{n}}{n!} & 0 \\
0 & \sum_{n=0}^{\infty} \frac{(-3 t)^{n}}{n!}
\end{array}\right] Q^{-1} \\
= & {\left[\begin{array}{c}
\frac{2}{3} \frac{1}{3} \\
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right]+e^{-3 t}\left[\begin{array}{cc}
\frac{1}{3} & -\frac{1}{3} \\
-\frac{2}{3} & \frac{2}{3}
\end{array}\right], } \\
\therefore \quad & \lim _{t \rightarrow \infty} P(t)=\left[\begin{array}{cc}
\frac{2}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right], \quad \text { namely, } \\
& \lim _{t \rightarrow \infty} P(X(t)=0)=2 / 3, \lim _{t \rightarrow \infty} P(X(t)=1)=1 / 3 . \quad \square
\end{aligned}
$$

Remark: Set $\pi=[2 / 3,1 / 3]$. Then, $\pi P(t)=\pi, \forall t \geq 0$, so π is a SD for $P(t)$.

§3.4 The birth and death process

Setup:

$$
\text { Let } S=\{0,1, \cdots\}
$$

$D=\left[q_{x y}\right]=\left[\begin{array}{ccccc}-\lambda_{0} & \lambda_{0} & 0 & 0 & 0 \\ \mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & 0 \\ 0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & 0 \\ 0 & 0 & \ddots & \ddots & \ddots\end{array}\right]$.
Assume that all $\lambda_{x}, \mu_{x} \neq 0(>0)$.
λ_{x} : birth rate, μ_{x} : death rate
$x-1) \xrightarrow{\text { rate } \mu_{x}} x \xrightarrow{\text { rate } \lambda_{x}} x+1$

Example 1. Revisit the Poisson process.

We already derived earlier $P(t)=\left[P_{x y}(t)\right]$ for a Poisson process $X(t), t \geqslant 0$, using

$$
X(t)=\max \left\{n: \tau_{n} \leqslant t\right\} .
$$

We further have derived:

$$
\begin{gathered}
P^{\prime}(t)=P(t) D, \quad D=\left[\begin{array}{rrrl}
-\lambda & \lambda & & \\
& -\lambda & \lambda & \\
& & \ddots & \ddots
\end{array}\right], \\
\\
\\
\end{gathered}>0 \text { : arrival rate. }
$$

Here we want to derive the inverse:

Proposition. If $X(t)$ is a MJP with rate matrix

$$
D=\left[\begin{array}{cccc}
-\lambda & \lambda & & \\
& -\lambda & \lambda & \\
& & \ddots & \ddots
\end{array}\right]
$$

then $X(t)$ has the Poisson distribution, i.e.

$$
P_{x y}(t)= \begin{cases}e^{-\lambda t \frac{(\lambda t)^{(y-x)}}{(y-x)!}} & \text { if } y \geqslant x \geqslant 0 \\ 0 & \text { otherwise }\end{cases}
$$

It is another way of obtaining the Poisson process.

Pf.: Recall

$$
P_{x y}^{\prime}(t)=\sum_{z} P_{x z}(t) q_{z y}
$$

Observe
(i) If $y=0$, then

$$
\begin{aligned}
P_{x 0}^{\prime}(t)= & -\lambda P_{x 0}(t), \quad P_{x 0}(0)=\delta_{x 0} \\
& \therefore P_{x 0}(t)=\delta_{x 0} e^{-\lambda t}
\end{aligned}
$$

(ii) If $y \geq 1$, then

$$
\begin{aligned}
& P_{x y}^{\prime}(t)=\lambda P_{x, y-1}(t)-\lambda P_{x y}(t), \quad P_{x y}(0)=\delta_{x y} \\
& \therefore P_{x y}(t)=e^{-\lambda t} \delta_{x y}+\int_{0}^{t} e^{-\lambda(t-s)} \lambda P_{x, y-1}(s) d s .
\end{aligned}
$$

Claim \#1. $P_{x y}(t)=0, \forall y<x$. Indeed,
if $y=0(x \geq 1), P_{x 0}(t)=0$.
if $y=1(x \geq 2)$,

$$
P_{x, 1}^{\prime}(t)=\lambda P_{x, 0}(t)-\lambda P_{x, 1}(t)=-\lambda P_{x, 1}(t), P_{x, 1}(0)=0 .
$$

$$
\therefore P_{x, 1}(t)=0 .
$$

If $y=2(x \geq 3)$,

$$
P_{x, 2}^{\prime}(t)=\lambda P_{x, 1}(t)-\lambda P_{x, 2}(t)=-\lambda P_{x, 2}(t), P_{x, 2}(0)=0 .
$$

$$
\therefore P_{x, 2}(t)=0 .
$$

Inductively,

$$
P_{x y}(t)=0, \quad \forall x>y \geq 0 .
$$

Claim \#2. $P_{x y}(t)=e^{-\lambda t} \frac{(\lambda t)^{y-x}}{(y-x)!}, \forall y \geq x \geq 0$.
Indeed, let $x \geq 0$ be fixed.
For $y=x$,

$$
P_{x x}(t)=e^{-\lambda t}+\int_{0}^{t} e^{-\lambda(t-s)} \lambda \underbrace{P_{x, x-1}(s)}_{=0} d s=e^{-\lambda t}
$$

For $y=x+1$,

$$
\begin{aligned}
P_{x, x+1}(t) & =e^{-\lambda t} \underbrace{\delta_{x, x+1}}_{=0}+\int_{0}^{t} e^{-\lambda(t-s)} \underbrace{\lambda P_{x, x}(s)}_{=e^{-\lambda s}} d s \\
& =\cdots=e^{-\lambda t} \lambda t .
\end{aligned}
$$

Inductively, we get the desired result.

Exercise:

(1) Extend the above to

$$
D=\left[\begin{array}{ccccc}
-\lambda_{0} & \lambda_{0} & & & \\
& -\lambda_{1} & \lambda_{1} & & \\
& & -\lambda_{2} & \lambda_{2} & \\
& & & \ddots & \ddots
\end{array}\right], \quad \text { (see. P.98). }
$$

It is a general pure birth process.
(2) Think about the more general BD process:

$$
D=\left[\begin{array}{ccccc}
-\lambda_{0} & \lambda_{0} & 0 & 0 & 0 \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & 0 \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & 0 \\
0 & 0 & \ddots & \ddots & \ddots
\end{array}\right]
$$

Example 2. Branching Process:

- A collection of particles
- each waiting to either split into two particles with prob p or vanish with prob $(1-p)$
- the waiting time is exp. r.v. with rate λ.
$X(t) \stackrel{\text { def }}{=}$ be the no of particles at time t.
Q.: Find the rate matrix D.

Lemma. Let ξ_{1}, \cdots, ξ_{n} be independent r.v. having exponential distribution with rate $\alpha_{1}, \cdots, \alpha_{n}$, resp. Then,

$$
\min \left\{\xi_{1}, \cdots, \xi_{n}\right\}
$$

is an exponential r.v. with rate

$$
\alpha_{1}+\cdots+\alpha_{n},
$$

and for each $k=1, \cdots, n$

$$
P\left(\xi_{k}=\min \left\{\xi_{1}, \cdots, \xi_{n}\right\}\right)=\frac{\alpha_{k}}{\alpha_{1}+\cdots+\alpha_{n}}
$$

If so, then

$$
\begin{aligned}
& Q=\left[\begin{array}{cccc}
1 & 0 & \cdots & \\
1-p & 0 & p & \\
& 1-p & 0 & p
\end{array}\right] \quad \text { (Markov matrix for state transition), } \\
& D=\left[\begin{array}{ccccc}
0 & 0 & 0 & & \\
(1-p) \lambda & -\lambda & p \lambda & & \\
& 2 \lambda(1-p) & -2 \lambda & 2 \lambda p & \\
& & 3 \lambda(1-p) & -3 \lambda & 3 \lambda p \\
& & & \ddots & \ddots
\end{array}\right] .
\end{aligned}
$$

Indeed,

- Let $X(0)=x$, and ξ_{1}, \cdots, ξ_{x} be the time any one of the particles splits or disappears.
- At time $\tau_{1}=\min \left\{\xi_{1}, \cdots, \xi_{x}\right\}$, the no of particles will be $x+1$ or $x-1$.
- By lemma above, τ_{1} is an exp. r.v. with rate λx : the portion to $x+1=p \cdot \lambda x$; the portion to $x=1=(1-p) \cdot \lambda x$.

$\lambda x=$ the rate to jump away from x
$p \cdot \lambda x=$ the rate to jump to $x+1$
(Birth rate)

$$
\begin{aligned}
(1-p) \cdot \lambda x= & \text { the rate to jump to } x-1 \\
& \text { (Death rate) }
\end{aligned}
$$

Proof of Lemma:

$$
\begin{aligned}
& P\left(\min \left\{\xi_{1}, \cdots, \xi_{n}\right\}>t\right) \\
& =P\left(\xi_{1}>t, \cdots, \xi_{n}>t\right) \\
& =P\left(\xi_{1}>t\right) \times \cdots \times P\left(\xi_{n}>t\right) \\
& =e^{-\alpha_{1} t} \times \cdots \times e^{-\alpha_{n} t} \\
& =e^{-\left(\alpha_{1}+\cdots+\alpha_{n}\right) t} .
\end{aligned}
$$

To consider $P\left(\xi_{k}=\min \left\{\xi_{1}, \cdots, \xi_{n}\right\}\right)$, W.L.G. take $k=1$. Set

$$
\eta=\min \left\{\xi_{2}, \cdots, \xi_{n}\right\}
$$

Then by above, η is an exp.r.v. with rate

$$
\beta_{1} \stackrel{\text { def }}{=} \sum_{y=2}^{n} \alpha_{y} .
$$

$$
\begin{aligned}
& P\left(\xi_{1}=\min \left\{\xi_{1}, \cdots, \xi_{n}\right\}\right) \\
& =P\left(\xi_{1} \leqslant \eta\right) \\
& =\iint_{x \leqslant y} \alpha_{1} e^{-\alpha_{1} x} \cdot \beta_{1} e^{-\beta_{1} y} d x d y \\
& =\int_{0}^{\infty}\left(\int_{x}^{\infty} \cdots d y\right) d x \\
& =\frac{\alpha_{1}}{\alpha_{1}+\beta_{1}} \\
& =\frac{\alpha_{1}}{\alpha_{1}+\sum_{y=2}^{n} \alpha_{y}} \\
& =\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}} .
\end{aligned}
$$

For instance, consider ξ_{1}, ξ_{2} only:

$$
\begin{aligned}
P\left(\xi_{1}=\min \left\{\xi_{1}, \xi_{2}\right\}\right) & =P\left(\xi_{1} \leqslant \xi_{2}\right) \\
& =\iint_{x \leqslant y} \alpha_{1} e^{-\alpha_{1} x} \cdot \alpha_{2} e^{-\alpha_{2} y} d x d y \\
& =\cdots=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}} .
\end{aligned}
$$

Remark: Suppose that we allow new particles to immigrate into the system at rate α, and then give succeeding generation.
$\eta \stackrel{\text { def }}{=}$ the first time a new particle arrives.
$\tau_{1}=\min \left\{\xi_{1}, \cdots, \xi_{x}, \eta\right\}$: the waiting time to change.
the rate of changing away from x particles $=x \lambda+\alpha . v$

$$
D=\left[\begin{array}{ccccc}
-\alpha & \alpha & & & \\
(1-p) \lambda-(\lambda+\alpha) & p \lambda+\alpha & & \\
& 2(1-p) \lambda & -(2 \lambda+\alpha) & 2 p \lambda+\alpha & \\
0 & \ddots & \ddots & \ddots
\end{array}\right]
$$

See the textbook P92.

Example 3. Queuing Model.

$X(t) \stackrel{\text { def }}{=}$ the no of persons on the line at time t waiting for service.

There are several models for queueing.

- $M / M / 1$ queue:

M stands for memoyless,
$1^{\text {st }} \mathrm{M}$ stands for waiting time for the arrival,
$2^{\text {nd }} \mathrm{M}$ stands for waiting time for service,
The last number is for the number of servers.

$$
D=\left[\begin{array}{cccc}
-\lambda & \lambda & 0 & 0 \\
\mu & (-\lambda+\mu) & \lambda & 0 \\
0 & \ddots & \ddots & \ddots
\end{array}\right] .
$$

- $\mathbf{M} / \mathbf{M} / k$ queue (k servers):

Note: $\mu_{n}= \begin{cases}n \mu & \text { if } n \leqslant k, \\ k \mu & \text { if } n>k\end{cases}$

$$
D=\left[\begin{array}{ccccccc}
-\lambda & \lambda & & & & & \\
\mu-(\mu+\lambda) & \lambda & & & 0 & \\
& 2 \mu & -(2 \mu+\lambda) & \lambda & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & k \mu-(k \mu+\lambda) & \lambda & \\
& 0 & & & k \mu & -(k \mu+\lambda) & \lambda \\
& & & & & \ddots & \ddots
\end{array}\right]
$$

- $\mathbf{M} / \mathbf{M} / \infty$ queue (∞ servers):

$$
D=\left[\begin{array}{ccccc}
-\lambda & \lambda & & & \\
\mu-(\mu+\lambda) & \lambda & & \\
& 2 \mu & -(2 \mu+\lambda) & \lambda & \\
& & \ddots & \ddots & \ddots
\end{array}\right]
$$

arrival rate $=\lambda$, service rate $=\mu$,
$X(t) \stackrel{\text { def }}{=}$ the no of customers on the line at time t.
(e.g., in the telephone exchange, this is a continuous-time version of a previous example in the Markov chain).
Q.: Find $P_{x y}(t)$ and $\lim _{t \rightarrow \infty} P_{x y}(t)$.

Lemma. Let $Y(t)$ be a Poisson process with rate λ. Then for $0 \leqslant s \leqslant t$ (t fixed),

$$
P\left(\tau_{1} \leqslant s \mid Y(t)=1\right)=\frac{s}{t},
$$

i.e. the density function is $\frac{1}{t}$ on $[0, t]$, namely, given that the arrival (one) is within $[0, t]$, the arrival time is a uniform distr on $[0, t]$.

Note: This is a special case of Ex 6 with $Y(t)=n$.

Pf.: For $0 \leqslant s \leqslant t$,

$$
\begin{aligned}
& P\left(\tau_{1} \leqslant s \mid Y(t)=1\right) \\
& =P(Y(s)=1 \mid Y(t)=1) \\
& =\frac{P(Y(s)=1, Y(t)=1)}{P(Y(t)=1)} \\
& =\frac{P(Y(s)=1, Y(t)-Y(s)=0)}{P(Y(t)=1)} \\
& =\frac{e^{-\lambda s \frac{(\lambda s)}{1!}} \cdot e^{-\lambda(t-s) \frac{(\lambda(t-s))^{0}}{0!}}}{e^{-\lambda t} \frac{(\lambda t)}{1!}} \\
& =\frac{s}{t} .
\end{aligned}
$$

Assume $X(0)=x$.
$Y(t) \stackrel{\text { def }}{=}$ the total no that arrived in time $(0, t]$.
Let
$X(t)=R(t)+N(t)$,
$R(t) \stackrel{\text { def }}{=}$ the no of the original $x($ at $t=0)$ that are still being served,
$N(t) \stackrel{\text { def }}{=}$ the no of those from $Y(t)$ that are still being served.

Fact 1. $R(t)$, i.e., the no of the original x (at $t=0$) that are still being served, is a binomial r.v.:

$$
\begin{gathered}
P(R(t)=k)=\binom{x}{k}\left(e^{-\mu t}\right)^{k}\left(1-e^{-\mu t}\right)^{x-k} \\
0 \leq k \leq x \\
x=\text { the total no at } t=0 \\
e^{-\mu t}=\text { the success prob of still being served. }
\end{gathered}
$$

Fact 2. Recall: $Y(t)$ is the total no that arrived in time $(0, t]$. We want to consider

$$
P(N(t)=n \mid Y(t)=k)
$$

Note: Fix t.

- Given $Y(t)=k, N(t)$ should be a binomial r.v., but we have to find "the success prob":

$$
p_{t}=P(N(t)=1 \mid Y(t)=1) .
$$

- For one that arrived at time $s \in(0, t]$, the prob of still being served at time t is $e^{-\mu(t-s)}$.
- By lemma, the arrival time s subject to one arrival in $(0, t]$ is uniform dist $1 / t$.
- Then the prob that he is still being served at time t is

$$
p_{t}=\int_{0}^{t} \frac{1}{t} \cdot e^{-\mu(t-s)} d s=\frac{1-e^{-\mu t}}{\mu t} .
$$

Hence,

$$
\begin{aligned}
& P(N(t)=n \mid Y(t)=k)=\binom{k}{n} p_{t}^{n}\left(1-p_{t}\right)^{k-n}, \\
& 0 \leq n \leq k . \\
& \therefore P(N(t)=n)=\sum_{k=n}^{\infty} P(Y(t)=k, N(t)=n) \\
& = \\
& =\sum_{k=n}^{\infty} P(Y(t)=k) P(N(t)=n \mid Y(t)=k) \\
& = \\
& = \\
& =\frac{\left(\lambda t p_{t}\right)^{n}}{n!} e^{-\lambda t p_{t}} . \quad(\text { see } P 101)
\end{aligned}
$$

The same as in last Chap (P55).

We conclude that (Recall $X(t)=R(t)+N(t))$

$$
\begin{aligned}
P_{x y}(t) & =P_{x}(X(t)=y) \\
& =\sum_{k=0}^{\min \{x, y\}} P_{x}(R(t)=k) P(N(t)=y-k) \\
& =\sum_{k=0}^{\min \{x, y\}}\binom{x}{k} e^{-k \mu t}\left(1-e^{-\mu t}\right)^{x-k} \frac{\left(\lambda t P_{t}\right)^{y-k} e^{-\lambda t p_{t}}}{(y-k)!} .
\end{aligned}
$$

For $t \rightarrow \infty$, all the terms vanish except $k=0$:

$$
\lim _{t \rightarrow \infty} P_{x y}(t)=e^{-\lambda / \mu} \frac{(\lambda / \mu)^{y}}{y!} \quad\left(t p_{t} \rightarrow 1 / \mu \quad \text { as } t \rightarrow \infty\right) .
$$

Note: Compare it with the "telephone exchange" example last chapter.

§3.5 Limiting properties of MJP

The definitions of

- stationary distribution (SD)
- recurrence or transience
- etc
are the same as Markov chain.
Let us only sketch some of them.
- SD:

Let

$$
X(t), \quad t \geqslant 0
$$

be a MJP.

Def.: π is called a SD if
(i) (distribution)

$$
\pi(y) \geqslant 0, \forall y \in S ; \sum_{y} \pi(y)=1
$$

(ii) (stationary)

$$
\sum_{x \in S} \pi(x) P_{x y}(t)=\pi(y), \forall y \in S, \forall t \geqslant 0
$$

How to find the SD π ?

In fact,

$$
0=\left(\sum_{x} \pi(x) P_{x y}(t)\right)^{\prime}=\sum_{x} \pi(x) P_{x y}^{\prime}(t)
$$

(Note: there is a technical point to interchange \sum_{x} and $(\cdot)^{\prime}$ for the infinite sum)

Let $t \rightarrow 0+$, then $\sum_{x} \pi(x) q_{x y}=0$, i.e. in matrix form

$$
\pi D=0
$$

where $D=\left[q_{x y}\right]$ is the rate matrix. The converse is also true.

Example. Find the SD of the birth and death process with rate

$$
D=\left[\begin{array}{cccc}
-\lambda_{0} & \lambda_{0} & & \\
\mu_{1}-\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & & \\
& \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} \\
& & \ddots & \ddots
\end{array}\right]
$$

Sol.: Let $\pi=\left(x_{0}, x_{1}, \cdots\right) . \pi D=0$ is

$$
\left[x_{0}, x_{1}, \cdots\right]\left[\begin{array}{ccccc}
-\lambda_{0} & \lambda_{0} & & & \\
\mu_{1}-\left(\mu_{1}+\lambda_{1}\right) & \lambda_{1} & & \\
& & \ddots & \ddots & \ddots
\end{array}\right]=[0,0, \cdots] .
$$

Hence

$$
\left\{\begin{array}{l}
-\lambda_{0} x_{0}+\mu_{1} x_{1}=0 \\
\lambda_{k-1} x_{k-1}-\left(\lambda_{k}+\mu_{k}\right) x_{k}+\mu_{k+1} x_{k+1}=0, k \geq 1
\end{array}\right.
$$

Note: For $k \geq 1$,

$$
\begin{aligned}
& \lambda_{k} x_{k}-\mu_{k+1} x_{k+1}=\lambda_{k-1} x_{k-1}-\mu_{k} x_{k} \\
&=\cdots=\lambda_{0} x_{0}-\mu_{1} x_{1}=0 \\
& \therefore x_{k}=\frac{\lambda_{k-1}}{\mu_{k}} x_{k-1}=\cdots=\frac{\lambda_{k-1}}{\mu_{k}} \cdot \frac{\lambda_{k-2}}{\mu_{k-1}} \cdots \frac{\lambda_{0}}{\mu_{1}} x_{0} \\
& \therefore x_{k}=\beta_{k} x_{0}, \quad \beta_{k} \stackrel{\text { def }}{=} \frac{\lambda_{0} \cdots \lambda_{k-1}}{\mu_{1} \cdots \mu_{k}}(k \geq 1) .
\end{aligned}
$$

Formally, $\sum_{k=0}^{\infty} x_{k}=\left(\sum_{k=0}^{\infty} \beta_{k}\right) x_{0}$ (Convention: $\beta_{0}=1$).
Then,

- if $\beta \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} \beta_{k}<\infty$, then choosing $x_{0}=\frac{1}{\beta}$,

$$
\pi=\left(\frac{1}{\beta}, \frac{\beta_{1}}{\beta}, \frac{\beta_{2}}{\beta}, \cdots\right) \text { is a } \mathrm{SD} .
$$

- if $\sum_{k=0}^{\infty} \beta_{k}=\infty$, then, no SD!

Exercise: Use this to check the queue models:

$$
\mathrm{M} / \mathrm{M} / 1, \mathrm{M} / \mathrm{M} / 2, \mathrm{M} / \mathrm{M} / \infty .
$$

For instance, $\mathrm{M} / \mathrm{M} / \infty$ case:

$$
\left\{\begin{array}{l}
\lambda_{k}=\lambda(k \geqslant 0) \\
\mu_{k}=k \mu(k \geqslant 1)
\end{array} \quad \therefore \beta_{k}=\left(\frac{\lambda_{0}}{\mu_{1}}\right) \cdots\left(\frac{\lambda_{k-1}}{\mu_{k}}\right)=\frac{\lambda^{k}}{k!\mu^{k}} .\right.
$$

$$
\sum_{k \geq 0} \beta_{k}=e^{\lambda / \mu}
$$

$\therefore \pi=\left(e^{-\frac{\lambda}{\mu}}, e^{-\frac{\lambda}{\mu}} \frac{\lambda}{\mu}, \frac{e^{-\frac{\lambda}{\mu}}\left(\frac{\lambda}{\mu}\right)^{2}}{2!}, \cdots, \frac{e^{-\frac{\lambda}{\mu}}\left(\frac{\lambda}{\mu}\right)^{k}}{k!}, \cdots\right)$.
"the same as the one by looking for the limit distribution $\lim _{t \rightarrow \infty} P_{x y}(t)^{\prime \prime}$

- Recurrence and transience.
$\tau_{1} \stackrel{\text { def }}{=}$ the first time to jump
$T_{y} \stackrel{\text { def }}{=} \min \left\{t \geqslant \tau_{1}: X(t)=y\right\}$ (hitting time)

$$
\left(=\infty \text { if } X(t) \neq y, \forall t \geqslant \tau_{1}\right)
$$

$\rho_{x y} \stackrel{\text { def }}{=} P_{x}\left(T_{y}<\infty\right)$
(the prob that the process starting from x eventually hits y)
Recurrent: $\rho_{y y}=1$.
Transient: $\rho_{y y}<1$.
Process is irreducible: $\rho_{x y}>0, \forall x, y \in S$.

Let Q be the matrix in the MJP, i.e.

$$
\begin{gathered}
P_{x}\left(\tau_{1} \leqslant t, X\left(\tau_{1}\right)=y\right)=F_{x}(t) Q_{x y}, y \neq x \\
F_{x}(t)=1-e^{-q_{x} t}
\end{gathered}
$$

Assume irreducible, i.e. $q_{x}>0, \forall x$. Then

$$
P\left(X\left(\tau_{1}\right)=y \mid X(0)=x\right)=Q_{x y}\left(=\frac{q_{x y}}{q_{x}}\right), \forall y \neq x
$$

Let $\tau_{0}=1$, and

$$
Z_{n}=X\left(\tau_{n}\right), n=0,1,2, \cdots
$$

(Only count the jump each time, but ignore the length of waiting time).

Then,

$\left\{Z_{n}\right\}_{n=0}^{\infty}$ is a Markov chain with Q as transition matrix.

Note:

$$
T_{y} \stackrel{\text { def }}{=} \inf \left\{t \geqslant \tau_{1}: X(t)=y\right\}<\infty
$$

iff
$T_{y}^{\prime} \stackrel{\text { def }}{=} \inf \left\{n \geqslant 1: Z_{n}=y\right\}<\infty$ (as Markov chain).
$\therefore \rho_{x y}$ for $\left\{Z_{n}\right\}_{n=0}^{\infty}$ is the same as $\rho_{x y}$ for $\{X(t)\}_{t \geqslant 0}$.
\therefore To check recurrent/transience,
we need only consider Q !

Example: In the birth \& death process
$Q=\left[\begin{array}{ccccc}0 & 1 & & \\ \frac{\mu_{1}}{\lambda_{1}+\mu_{1}} & 0 & \frac{\lambda_{1}}{\lambda_{1}+\mu_{1}} & \\ & \frac{\mu_{2}}{\lambda_{2}+\mu_{2}} & 0 & \frac{\mu_{2}}{\lambda_{2}+\mu_{2}} \\ & \ddots & \ddots & \ddots\end{array}\right] \stackrel{\text { def }}{=}\left[\begin{array}{ccccc}0 & 1 & & & \\ q_{1} & 0 & p_{1} & \\ & q_{2} & 0 & p_{2} & \\ & \ddots & \ddots & \ddots\end{array}\right]$
It follows from Chapter 1 (P33) that the chain is recurrent iff

$$
\sum_{n=1}^{\infty} \frac{\mu_{1} \cdots \mu_{n}}{\lambda_{1} \cdots \lambda_{n}}=\sum_{n=1}^{\infty} \frac{q_{1} \cdots q_{n}}{p_{1} \cdots p_{n}}=\infty
$$

- Long-run behavior.

Let $m_{x} \stackrel{\text { def }}{=} E_{x}\left(T_{x}\right)$ (the mean return time).

- Null recurrent: $m_{x}=\infty$
- Positive recurrent: $m_{x}<\infty$. In this case

$$
\pi(x)=\frac{1}{q_{x} m_{x}}
$$

Intuitive Proof of $(*)$:

- In $[0, t]$ for large t, the process will visit x for $\frac{t}{m_{x}}$ times and the average time staying at x (waiting time to jump way) per visit is $1 / q_{x}$.
- The total time spent in x during $[0, t]$ is $\frac{t}{m_{x}} \cdot \frac{1}{q_{x}}$.
- The proportion of time spent in x is $\frac{1}{q_{x} m_{x}}$.

Note: Any MJP is aperiodic.
For an irreducible, positive recurrent MJP,

$$
\lim _{t \rightarrow \infty} P_{x y}(t)=\pi(y)=\frac{1}{q_{y} m_{y}}, \quad x, y \in S
$$

The end of lectures

