Chapter 2:

Stationary Distribution

§2.1 Stationary Distribution

Motivation: Recall the two state MC with

$$
P=\left[\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right], \quad 0<p, q<1
$$

We have shown (Chapter 1):

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P\left(X_{n}=0\right)=q /(p+q) \stackrel{\text { def }}{=} a \\
& \lim _{n \rightarrow \infty} P\left(X_{n}=1\right)=p /(p+q)=1-a
\end{aligned}
$$

Denote $\pi=[a, 1-a]$ (limit distribution), i.e.

$$
\begin{equation*}
\pi=\lim _{n \rightarrow \infty} \underbrace{\left[P\left(X_{n}=0\right), P\left(X_{n}=1\right)\right]}_{\text {pdf of } X_{n}}=\lim _{n \rightarrow \infty} \pi_{0} P^{n}, \tag{*}
\end{equation*}
$$

where $\pi_{0}=\left[P\left(X_{0}=0\right), P\left(X_{0}=1\right)\right]$ is the initial distribution.
Note: Here π is independent of π_{0}.

We discuss two issues related to π :

- It is direct to verify

$$
\pi P=\pi
$$

i.e. $\left[\frac{q}{p+q}, \frac{p}{p+q}\right]\left[\begin{array}{cc}1-p & p \\ q & 1-q\end{array}\right]=\left[\frac{q}{p+q}, \frac{p}{p+q}\right]$.

Hence by induction,

$$
\pi P^{n}=\pi, \quad n=1,2, \cdots
$$

It means that if the chain starts with X_{0} with pdf π, then at any time $n=1,2, \cdots, X_{n}$ has the same distribution as π.

Note: $(*)$ also directly implies

$$
\pi=\lim _{n \rightarrow \infty}\left(\pi_{0} P^{n-1}\right) P=\pi P
$$

- One can also show:

$$
\lim _{n \rightarrow \infty} P^{n}=\left[\begin{array}{ll}
a & 1-a \\
a & 1-a
\end{array}\right]=\left[\begin{array}{l}
\pi \\
\pi
\end{array}\right]
$$

Two ways:

(i) Diasonalize P. See Tutorial or Exercise.
(ii) Find

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P^{n}(x, y) & =\lim _{n \rightarrow \infty} P\left(X_{n}=y \mid X_{0}=x\right) \\
& =\lim _{n \rightarrow \infty} P_{x}\left(X_{n}=y\right)
\end{aligned}
$$

As proved before, for $x=0$ or 1
$\lim _{n \rightarrow \infty} P_{x}\left(X_{n}=0\right)=a \quad$ i.e. the $1^{\text {st }}$ column is a,
$\lim _{n \rightarrow \infty} P_{x}\left(X_{n}=1\right)=1-a \quad$ i.e. the $2^{\text {nd }}$ column is $1-a$.

Observe: The fact that

$$
\pi P=\pi=1 \cdot \pi
$$

means that π is the left 1 -eigenvector of P.
Thus, we may also find the limit distribution π directly by solving

$$
[u, v]\left[\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right]=[u, v]
$$

i.e.
$[u, v]\left[\begin{array}{cc}-p & p \\ q & -q\end{array}\right]=[0,0]$, i.e., $\left[\begin{array}{cc}-p & q \\ p & -q\end{array}\right]\left[\begin{array}{l}u \\ v\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
$\left(\because u \geqslant 0, v \geqslant 0, u+v=1 \therefore u=\frac{q}{p+q}, v=\frac{p}{p+q}\right)$

General Situaion:

If

$$
\pi=\lim _{n \rightarrow \infty} \pi_{0} P^{n} \text { exists }
$$

for some initial distribution π_{0},
then π satisfies

$$
\pi=\left(\lim _{n \rightarrow \infty} \pi_{0} P^{n-1}\right) P=\pi P
$$

i.e.,

$$
\pi=\pi P
$$

or equivalently,

$$
\pi(y)=\sum_{x \in S} \pi(x) P(x, y), \quad \forall y \in S
$$

Definition: We say that a probability row-vector π is a stationary distribution for P if

$$
\pi=\pi P
$$

i.e. the pdf π is a left 1 -eigenvector of P.

Two basic questions:
(i) Existence (\exists): Does every P have a SD?
(ii) Uniqueness (!): Is the SD unique?

Two notes:

(1) If $\pi=\pi P$ has a unique solut' n then the limit $\lim _{n \rightarrow \infty} \pi_{0} P^{n}$ (if it exists) is independent of π_{0}.
(2) If $\lim _{n \rightarrow \infty} P^{n}=\left[\begin{array}{c}\pi \\ \pi \\ \vdots \\ \pi\end{array}\right]$ then for any initial distri π_{0},

$$
\lim _{n \rightarrow \infty} \pi_{0} P^{n}=\pi
$$

i.e. the limit exists and is independent of π_{0}.

This also suggests a way of finding the SD of P.

Proposition: Let P be a Markov matrix with finite state space S. Assume:
(i) The left 1-eigenvector (which must exist) can be chosen to have all nonegative entries;
(ii) 1 is a simple eigenvalue;
(iii) other eigenvalues $\left|\lambda_{i}\right|<1$.

Then P has a unique $\mathrm{SD} \pi$, i.e. $\pi P=\pi$, and

$$
\lim _{n \rightarrow \infty} P^{n}=\left[\begin{array}{c}
\pi \\
\pi \\
\vdots \\
\pi
\end{array}\right]
$$

Pf.: (Sketch only) (See Lawler P11-15)

$$
P=Q D Q^{-1}, \quad D=\left[\begin{array}{c|c}
1 & O \\
\hline O & M
\end{array}\right], \quad M^{n} \rightarrow 0
$$

Q : columns are right eigenvectors; 1 st row is $\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right]$
Q^{-1} : rows are left eigenvectors; 1st row is a prob vector, denoted by π
$\therefore \lim _{n \rightarrow \infty} P^{n}=\lim _{n \rightarrow \infty} Q D^{n} Q^{-1}=Q\left[\frac{1 \mid O}{O O}\right] Q^{-1}=$

Remarks:
(1) If 1 is NOT a simple eigenvalue, then π may not be unique: e.g.

$$
P=\left[\begin{array}{cc}
P_{1} & 0 \\
0 & P_{2}
\end{array}\right]
$$

$\left.\begin{array}{l}\pi_{1} \text { is the SD of } P_{1} \\ \pi_{2} \text { is the SD of } P_{2}\end{array}\right\} \Rightarrow\left[\lambda \pi_{1},(1-\lambda) \pi_{2}\right]$ is the SD of P
(2) Without (iii), the limit $\lim _{n \rightarrow \infty} P^{n}$ may not exist (but π still may exist): e.g.

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \pi=\left[\frac{1}{2}, \frac{1}{2}\right]
$$

BUT eigenvalues: ± 1.
(3) Two further Facts for finite S (without proof):

Fact a. If for some $n \geq 1, P^{n}$ has all entries strictly positive, then three conditions are satisfied, therefore, P has a unique SD π, and

$$
\lim _{n \rightarrow \infty} P^{n}=\left[\begin{array}{c}
\pi \\
\vdots \\
\pi
\end{array}\right]
$$

Fact b. If P is irreducible, then P still has a unique SD.
(But $\lim _{n \rightarrow \infty} P^{n}$ may not exist, e.g., $P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$)

Computation Technique for finite S :

Case 1: P is irreducible.

$$
\pi P=\pi, \text { i.e., } P^{T} \pi^{T}=\pi^{T} \text {, i.e. }\left(P^{T}-I\right) \pi^{T}=0
$$

$$
P^{T}-I \xrightarrow{\text { row operation }}\left[\begin{array}{cccc}
* & * & \cdots & * \\
0 & * & \cdots & * \\
0 & 0 & \ddots & \vdots \\
0 & 0 & 0 & *
\end{array}\right],
$$

Upper diagonal form.

Fact \mathbf{b} above assures that the solution exists uniquely. (Note: Find π as a prob row-vector)

Case 2. P is reducible.

For instance, let $S=C_{1} \cup C_{2} \cup S_{T}$.
Reordering S accordingly, write

$$
\begin{gathered}
P=\left[\begin{array}{ccc}
P_{1} & 0 & 0 \\
0 & P_{2} & 0 \\
S_{1} & S_{2} & Q
\end{array}\right], \quad P^{n}=\left[\begin{array}{ccc}
P_{1}^{n} & 0 & 0 \\
0 & P_{2}^{n} & 0 \\
S_{1 n} & S_{2 n} & Q^{n}
\end{array}\right] \\
i=1,2: \lim _{n \rightarrow \infty} P_{i}^{n}=\left[\begin{array}{c}
\pi_{i} \\
\vdots \\
\pi_{i}
\end{array}\right], \pi_{i}: \text { SD of } P_{i}, \\
\lim _{n \rightarrow \infty} Q^{n}=0,
\end{gathered}
$$

(Chap1: For $y \in S_{T}, \lim _{n \rightarrow \infty} P^{n}(x, y)=0, \forall x \in S$).
In fact, all eigenvalues of Q have moduli <1.

$$
\therefore \lim _{n \rightarrow \infty} P^{n}=\left[\begin{array}{ccc}
{\left[\begin{array}{c}
\pi_{1} \\
\vdots \\
\pi_{1}
\end{array}\right]} & & \\
& 0 \\
0 & {\left[\begin{array}{c}
\pi_{2} \\
\vdots \\
\pi_{2}
\end{array}\right]} & \\
A_{1} & A_{2} & 0
\end{array}\right]
$$

$A_{1}=\lim _{n \rightarrow \infty} S_{1 n}, A_{2}=\lim _{n \rightarrow \infty} S_{2 n}:$
$A_{1}(x, y)=$ prob from $x \in S_{T}$ to $y \in C_{1}$ in the long run,
$A_{2}(x, y)=$ prob from $x \in S_{T}$ to $y \in C_{2}$ in the long run.
Q.: How to find A_{1}, A_{2} ?

Solution: Assume

$$
S_{T}=\left\{x_{1}, x_{2}, \cdots, x_{\ell}\right\}
$$

First find

$$
\rho_{C_{i}}(x), \quad x \in S_{T}, \quad i=1,2
$$

(absorption prob of C_{i}, i.e. prob to enter C_{i}).
Then, distribute according to π_{i}, e.g.

$$
A_{1}=\left[\begin{array}{c}
\rho_{C_{1}}\left(x_{1}\right) \pi_{1} \\
\rho_{C_{1}}\left(x_{2}\right) \pi_{1} \\
\vdots \\
\rho_{C_{1}}\left(x_{\ell}\right) \pi_{1}
\end{array}\right], \quad A_{2}=\left[\begin{array}{c}
\rho_{C_{2}}\left(x_{1}\right) \pi_{2} \\
\rho_{C_{2}}\left(x_{2}\right) \pi_{2} \\
\vdots \\
\rho_{C_{2}}\left(x_{\ell}\right) \pi_{2}
\end{array}\right] .
$$

Example 1. (Gambler's ruin chain) Let

$$
P=\begin{gathered}
0 \\
0 \\
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 \\
\hline \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} \\
0
\end{array}\right] .
$$

Show that

$$
\left.\begin{array}{l}
0 \\
0 \\
1 \\
2 \\
3 \\
3 \\
4
\end{array} \begin{array}{ccccc}
1 & 1 & 2 & 3 & 4 \\
\hline & 0 & 0 & 0 & 0 \\
\frac{3}{4} & 0 & 0 & 0 & \frac{1}{4} \\
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{4} \\
\frac{1}{4} & 0 & 0 & 0 & \frac{3}{4} \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Solution: From P, one can check that

$$
C_{1}=\{0\}, C_{2}=\{4\}, S_{T}=\{1,2,3\},
$$

and

$$
S=C_{1} \cup C_{2} \cup S_{T} .
$$

After reordering,

$$
P=\begin{gathered}
0 \\
0 \\
4 \\
1 \\
2 \\
3
\end{gathered}\left[\begin{array}{ccccc}
1 & 4 & 1 & 2 & 3 \\
0 & 1 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0
\end{array}\right] .
$$

Set $P=\left[\begin{array}{c|c}1 & 0 \\ 0 & 1\end{array} 0 . \begin{array}{l}\hline S\end{array}\right]$. Then, $P^{n}=\left[\begin{array}{cc|c}1 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline S_{n} & Q^{n}\end{array}\right]$, and
$\lim _{n \rightarrow \infty} S_{n}=A, \quad \lim _{n \rightarrow \infty} Q_{n}=0$,

$$
\lim _{n \rightarrow \infty} P^{n}=\left[\begin{array}{lll}
1 & 0 & \\
0 & 1 & 0 \\
\hline A & \mathbf{0}
\end{array}\right] .
$$

Need to find $A=A_{3 \times 2}$:
Note that for $i \in S_{T}=\{1,2,3\}, j \in C_{1} \cup C_{2}=\{0,4\}$,
$A(i, j)=$ prob that the chain starting at i eventually visits j

$$
\begin{gathered}
=P_{i}\left(T_{j}<\infty\right)=\rho_{i j}, \\
\rho_{i j}=P(i, j)+\sum_{k \in S_{T}} P(i, k) \rho_{k j} .
\end{gathered}
$$

Put in matrix form

$$
A=S+Q A \quad \therefore A=(I-Q)^{-1} S
$$

Here,

$$
S_{3 \times 2}=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 0 \\
0 & \frac{1}{2}
\end{array}\right], Q_{3 \times 3}=\left[\begin{array}{ccc}
0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0
\end{array}\right], \therefore(I-Q)^{-1}=\left[\begin{array}{ccc}
\frac{3}{2} & 1 & \frac{1}{2} \\
1 & 2 & 1 \\
\frac{1}{2} & 1 & \frac{3}{2}
\end{array}\right] .
$$

$$
\therefore A=(I-Q)^{-1} S=\left[\begin{array}{lll}
\frac{3}{4} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{4} & \frac{3}{4}
\end{array}\right] \text {. }
$$

	0	4	1	2	3			0	1	2	3	4	
0	1	0	0	0	0		0	1	0	0	0	0	
4	0	1	0	0	0	$\xrightarrow{\text { reorder }}$	1	$\frac{3}{4}$	0	0	0	$\frac{1}{4}$	
1	$\frac{3}{4}$	$\frac{1}{4}$	0	0	0		2	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	$=\lim _{n \rightarrow \infty}{ }^{n}$.
2	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0		3	$\frac{1}{4}$	0	0	0	3	
3	1	$\frac{3}{4}$	0	0	0		4	0	0	0	0	1	

Remark: Such computation also gives us a way to find

$$
\begin{aligned}
& \rho_{10}=\frac{3}{4}, \rho_{20}=\frac{1}{2}, \rho_{30}=\frac{1}{4}, \\
& \rho_{14}=\frac{1}{4}, \rho_{24}=\frac{1}{2}, \rho_{34}=\frac{3}{4} .
\end{aligned}
$$

Exercise: (Tutorial)

Modify the above to the MC with

$$
P=\left[\begin{array}{cc|c|cc}
\frac{1}{3} & \frac{2}{3} & \mathbf{0} & \mathbf{0} \\
\frac{1}{2} & \frac{1}{2} & & & \\
\hline \mathbf{0} & 1 & \mathbf{0} \\
\hline \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\
0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & 0 \\
\frac{1}{2} \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
2
\end{array}\right]
$$

and find $\lim _{n \rightarrow \infty} P^{n}$.

Example 2. Consider the random walk on

$$
S=\{0,1,2, \cdots\} \quad \text { (no longer finite! })
$$

with

$$
P=\left[\begin{array}{rrrr}
q & p & & \\
q & 0 & p & \\
& & & \\
& 0 & p & \\
& \ddots & \ddots & \ddots
\end{array}\right], \quad p, q>0, p+q=1 .
$$

Q.: Find the SD.

Note:

- This is an irreducible BD chain.
- The chain is recurrent iff $\sum_{k=0}^{\infty}\left(\frac{q}{p}\right)^{k}=\infty$, iff $q \geq p$.

Solution: Let π be the SD. Set

$$
x_{k}=\pi(k), \quad k=0,1, \cdots
$$

From $\pi=\pi P$, ie.,

$$
\left[x_{0}, x_{1}, \cdots\right]=\left[x_{0}, x_{1}, \cdots\right]\left[\begin{array}{rrrr}
q & p & & \\
q & & \\
q & 0 & p & \\
& & & \\
& & 0 & p \\
& & \ddots & \ddots
\end{array}\right]
$$

we get

$$
\left\{\begin{array}{l}
x_{0}=q x_{0}+q x_{1}, \text { i.e. } p x_{0}=q x_{1} \\
k \geq 1: x_{k}=q x_{k+1}+p x_{k-1}
\end{array}\right.
$$

$\therefore q x_{k+1}-p x_{k}=q x_{k}-p x_{k-1}=\cdots=q x_{1}-p x_{0}=0$
$\therefore x_{k}=\left(\frac{p}{q}\right) x_{k-1}=\cdots=\left(\frac{p}{q}\right)^{k} x_{0}, k=0,1,2, \cdots$
(i) $p<q$ (recurrent):

$$
\begin{aligned}
& 1=\sum_{k=0}^{\infty} x_{k}=\sum_{k=0}^{\infty}\left(\frac{p}{q}\right)^{k} x_{0}=\frac{x_{0}}{1-\frac{p}{q}} \quad\left(0<\frac{p}{q}<1\right) \\
& \therefore x_{0}=\frac{q-p}{q}>0 \\
& \text { SD: } \pi=\frac{q-p}{q}\left[1, \frac{p}{q},\left(\frac{p}{q}\right)^{2}, \cdots\right] .
\end{aligned}
$$

(ii) $p=q$ (recurrent): $\sum_{k=0}^{\infty}\left(\frac{p}{q}\right)^{k}=\infty . \pi$ does not exist.
(iii) $p>q$ (transient): π does NOT exist.

Exercise: Modify it to the general irreducible birth \& death chain on $S=\{0,1, \cdots\}$ with

$$
\begin{gathered}
P=\left[\begin{array}{ccccc}
r_{0} & p_{0} & & & \\
q_{1} & r_{1} & p_{1} & & \\
& q_{2} & r_{2} & p_{2} & \\
& & \ddots & \ddots & \\
& & & \\
& \text { all } p_{i}>0, \text { all } q_{i}>0 .
\end{array} \text { row sum }=1,\right.
\end{gathered}
$$

Q.: Find the SD π.

Example 3. Queueing model:

- In a telephone exchange, ξ_{n} denotes no of new calls coming in starting at time $n \geqslant 1$. $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ is i.i.d. and has a Poisson distribution with rate $\lambda>0$:

$$
p_{k}=e^{-\lambda} \frac{\lambda^{k}}{k!}, k=0,1,2, \cdots
$$

- Suppose that each call has prob $q \stackrel{\text { def }}{=} 1-p$ to finish in one unit time.
$X_{n} \stackrel{\text { def }}{=}$ no of calls in progress at time n.
Q.: Find the transition prob and the SD.

Solution: To find

$$
P(x, y)=P\left(X_{n+1}=y \mid X_{n}=x\right)
$$

we consider

$$
X_{n+1}=\xi_{n+1}+Y_{n+1}
$$

with $Y_{n+1} \stackrel{\text { def }}{=}$ no of calls at time n that remain at time $n+1$.
Fact:

$$
\begin{gathered}
P\left(Y_{n+1}=z \mid X_{n}=x\right)=\binom{x}{z} p^{z}(1-p)^{x-z} \\
0 \leqslant z \leqslant k
\end{gathered}
$$

Note: $p=$ non-finish prob, $q=1-p=$ finish prob.
$\therefore P(x, y)=P\left(X_{n+1}=y \mid X_{n}=x\right)$

$$
\begin{aligned}
& =\sum_{z=0}^{x \wedge y} P\left(X_{n+1}=y, Y_{n+1}=z \mid X_{n}=x\right) \\
& =\sum_{z=0}^{x \wedge y} P\left(\xi_{n+1}=y-z, Y_{n+1}=z \mid X_{n}=x\right) \\
& =\sum_{z=0}^{x \wedge y} P\left(\xi_{n+1}=y-z\right) P\left(Y_{n+1}=z \mid X_{n}=x\right) \\
& =\sum_{z=0}^{x \wedge y} e^{-\lambda} \frac{\lambda^{y-z}}{(y-z)!}\binom{x}{z} p^{z}(1-p)^{x-z} .
\end{aligned}
$$

To find SD, we will verify that if X_{0} is Poisson then $X_{n}(n \geqslant 1)$ satisfy the same Poisson distribution.

Lemma 1. If X_{n} is Poisson with rate t, then Y_{n+1} is Poisson with rate pt.
Pf.:

$$
\begin{aligned}
P\left(Y_{n+1}=y\right) & =\sum_{x=y}^{\infty} P\left(Y_{n+1}=y, X_{n}=x\right) \\
& =\sum_{x=y}^{\infty} P\left(X_{n}=x\right) P\left(Y_{n+1}=y \mid X_{n}=x\right) \\
& =\sum_{x=y}^{\infty} e^{-t} \frac{t^{x}}{x!}\binom{x}{y} p^{y}(1-p)^{x-y} \\
& =\frac{(p t)^{y} e^{-t}}{y!} \sum_{x=y}^{\infty} \frac{[t(1-p)]^{x-y}}{(x-y)!} \\
& =\frac{(p t)^{y} e^{-t}}{y!} e^{t(1-p)} \\
& =e^{-p t} \frac{(p t)^{y}}{y!}, \quad y=0,1,2, \cdots \quad \square
\end{aligned}
$$

Lemma 2. If X, Y are independent Poisson with rates t_{1} and t_{2} resp, then $Z=X+Y$ is Poisson with rate $t_{1}+t_{2}$.
Pf.:

$$
\begin{align*}
P(Z=z) & =P(X+Y=z) \\
& =\sum_{x=0}^{z} P(X+Y=z, X=x) \\
& =\sum_{x=0}^{z} P(X=x, Y=z-x) \\
& =\sum_{x=0}^{z} P(X=x) P(Y=z-x) \\
& =\sum_{x=0}^{z} e^{-t_{1}} \frac{t_{1}^{x}}{x!} e^{-t_{2}} \frac{t_{2}^{z-x}}{(z-x)!} \\
& =\frac{e^{-\left(t_{1}+t_{2}\right)}}{z!} \sum_{x=0}^{z}\binom{z}{x} t_{1}^{x} t_{2}^{z-x} \\
& =\frac{e^{-\left(t_{1}+t_{2}\right)}}{z!}\left(t_{1}+t_{2}\right)^{z}, \quad z=0,1, \cdots
\end{align*}
$$

Two lemmas above give:

- Assume X_{0} is Poisson with rate t (TBD).
- $X_{1}=\xi_{1}+Y_{1}$ is Poisson with rate

$$
\lambda+p t=t . \quad\left(\therefore t \stackrel{\text { def }}{=} \frac{\lambda}{1-p}=\frac{\lambda}{q}\right)
$$

- $X_{2}=\xi_{2}+Y_{2}$ is Poisson with rate $\lambda+p t=t$.
- $X_{n}=\xi_{n}+Y_{n}$ is Poisson with rate $\lambda+p t=t$.
\therefore The chain has a SD (Poisson, rate $=\lambda / q$):

$$
\pi(x)=e^{-\lambda / q} \frac{(\lambda / q)^{x}}{x!}, \quad x=0,1, \cdots
$$

Exercise: Check the textbook (Page 55-56) to
(i) Derive an explicit formular $P^{n}(x, y)$.
(ii) Show directly that

$$
\lim _{n \rightarrow \infty} P^{n}(x, y)=\pi(y), \quad \forall x, y \geqslant 0
$$

(Hence, π that we have found is the unique SD)

Sketch: • The key is to find P^{n} :
$X_{0}: \quad t$
$X_{1}: \lambda+t p$
$X_{2}: \quad \lambda+(\lambda+p t) p=t p^{2}+\lambda\left(1+p^{2}\right)$
$X_{3}: \lambda+\left[t p^{2}+\lambda\left(1+p^{2}\right)\right] p=t p^{3}+\lambda\left(1+p^{2}+p^{3}\right)$
$X_{n}: \quad t p^{n}+\lambda\left(1+p+\cdots+p^{n}\right)$

$$
=t p^{n}+\lambda \frac{1-p^{n}}{1-p}:=t_{n}
$$

then

$$
\sum_{x=0}^{\infty} e^{-t} \frac{t^{x}}{x!} P^{n}(x, y)=P_{x}\left(X_{n}=y\right)=e^{-t_{n}} \frac{t_{n}^{y}}{y!}
$$

Rewrite it as

$$
\sum_{x=0}^{\infty} \frac{P^{n}(x, y)}{x!} t^{x}=e^{-\lambda \frac{1-p^{n}}{1-p}} e^{t\left(1-p^{n}\right)} \frac{\left[t p^{n}+\lambda \frac{1-p^{n}}{1-p}\right]^{y}}{y!}
$$

Apply Taylor expansion and binormial expansion on the right, do the product, and compare coefficient of t^{x} for each x, then

$$
P^{n}(x, y)=e^{-\lambda \frac{1-p^{n}}{1-p}} \sum_{z=0}^{\min (x, y)}\binom{x}{z} p^{n z}\left(1-p^{n}\right)^{x-z} \frac{\left[\lambda \frac{1-p^{n}}{1-p}\right]^{y-z}}{(y-z)!} .
$$

Let $n \rightarrow \infty$, note $p^{n} \rightarrow 0$ as $0 \leq p<1$, in \sum, except for the term of $z=0$, all other terms tend to zero, then

$$
\lim _{n \rightarrow \infty} P^{n}(x, y)=e^{-\frac{\lambda}{1-p}} \frac{\left(\frac{\lambda}{1-p}\right)^{y}}{y!}=\pi(y)
$$

§2.2 Average number of visits

Given $\left\{X_{n}\right\}_{n=0}^{\infty}, S$ (finite or infinite),

$$
\begin{aligned}
& N_{n}(y) \stackrel{\text { def }}{=} \text { no of visits to } y \text { in } n \text {-steps, } \\
& \text { i.e. during times } m=1,2, \cdots, n .
\end{aligned}
$$

We are interested in the limits of

$$
\frac{N_{n}(y)}{n}, \quad \frac{E_{x}\left(N_{n}(y)\right)}{n} \text { as } n \rightarrow \infty
$$

Note:

- $\frac{N_{n}(y)}{n}$: proportion of the first n units of time that the chain visits y, or average no of visits to y per unit time.
- $\frac{E_{x}\left(N_{n}(y)\right)}{n}$: expected proportion for a chain starting at x, or frequency that the chain visits y from x.

It is direct to see

$$
\begin{aligned}
N_{n}(y) & =\sum_{m=1}^{n} 1_{y}\left(X_{m}\right), \\
E_{x}\left(N_{n}(y)\right) & =\sum_{m=1}^{n} P^{m}(x, y) .
\end{aligned}
$$

Case: y is transient.

$$
\text { Recall: } P_{x}(N(y)<\infty)=1
$$

$$
\lim _{n \rightarrow \infty} N_{n}(y)=N(y)<\infty \text { with prob } 1
$$

$$
\lim _{n \rightarrow \infty} E_{x}\left(N_{n}(y)\right)=E_{x}(N(y))=\frac{\rho_{x y}}{1-\rho_{y y}}<\infty .
$$

So,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{N_{n}(y)}{n}=0 \quad \text { with prob } 1 \\
& \lim _{n \rightarrow \infty} \frac{E_{x}\left(N_{n}(y)\right)}{n}=0
\end{aligned}
$$

Hence, we only consider y as a recurrent state.

Let y be recurrent. Denote

$$
\begin{aligned}
m_{y} \stackrel{\text { def }}{=} E_{y}\left(T_{y}\right): & \text { the mean return time to } y \text { for } \\
& \text { a chain starting at } y .
\end{aligned}
$$

Recall

$$
T_{y} \stackrel{\text { def }}{=} \min \left\{n \geqslant 1: X_{n}=y\right\} .
$$

Theorem: Suppose

$$
\left\{X_{n}\right\}_{n=0}^{\infty} \text { is irreducible and recurrent. }
$$

Then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{N_{n}(y)}{n}=\frac{1}{m_{y}} \quad \text { with prob } 1, \\
& \lim _{n \rightarrow \infty} \frac{E_{x}\left(N_{n}(y)\right)}{n}=\frac{1}{m_{y}}, \quad \forall x \in S .
\end{aligned}
$$

Remarks:
(1) Heuristically, the limit is the frequency and m_{y} is the waiting time. They are reciprocal to each other.
(2) If the chain is NOT irreducible, the statement of Theorem can be modified slightly; see the textbook Pages 58-59.

Pf.: Let the chain start from y. Introduce new r.v.:

$$
T_{y}^{r}=\min \left\{n \geqslant 1: N_{n}(y)=r\right\}, \quad r=1,2, \cdots
$$

i.e. the min ptv-time of the $r^{\text {th }}$ visit to y. Note:

- $N_{n}(y)=r$: By time n, the chain visits y for r times. (Warning: time 0 not counted).
- T_{y}^{r} : the min positive time up to which the chain visits y for exactly r times.

Set

$$
\begin{aligned}
& W^{1} \stackrel{\text { def }}{=} T_{y}^{1}=T_{y} \text { (i.e. hitting time of } y \text {) } \\
& W^{r} \stackrel{\text { def }}{=} T_{y}^{r}-T_{y}^{r-1}, \quad r=2,3, \cdots
\end{aligned}
$$

(i.e., waiting time between the $(r-1)^{t h}$ visit to y and the $r^{\text {th }}$ visit to y)

Then

$$
T_{y}^{r}=W_{y}^{1}+\cdots+W_{y}^{r}, \quad r=1,2, \cdots
$$

Note: $\left\{W_{y}^{r}\right\}_{r=1}^{\infty}$ is i.i.d.
(it is intuitively obvious due to the Markov property; see the textbook (page 59) for the rigorous proof)

Apply the SLLN, we have

$$
\begin{aligned}
\lim _{r \rightarrow \infty} \frac{T^{r}}{r}=\lim _{r \rightarrow \infty} \frac{w_{y}^{1}+\cdots+w_{y}^{r}}{r} & =E_{y}\left(T_{y}\right) \text { with prob } 1 \\
& =m_{y}
\end{aligned}
$$

Next, let $r=N_{n}(y)$, i.e. by time n, the chain visits y for r-times, and the $(r+1)^{\text {th }}$ visit to y will be after n, hence

$$
T_{y}^{r} \leqslant n<T_{y}^{r+1}
$$

so that

$$
\frac{T_{y}^{r}}{r} \leqslant \frac{n}{N_{n}(y)}=\frac{n}{r}<\frac{T_{y}^{r+1}}{r} \rightarrow m_{y} \quad \text { as } r \rightarrow \infty
$$

This implies that $\lim _{n \rightarrow \infty} \frac{n}{N_{n}(y)}=m_{y}$ with prob 1.

Moreover, we observe
$\begin{aligned} \lim _{n \rightarrow \infty} E_{x}\left(\frac{N_{n}(y)}{n}\right) & =E_{x}\left(\lim _{n \rightarrow \infty} \frac{N_{n}(y)}{n}\right) \text { (why? DCT) } \\ & =E_{x}\left(\frac{1}{m_{y}}\right) \\ & =\frac{1}{m_{y}} .\end{aligned}$
Added: Theorem (Dominated convergence theorem). Let (ξ_{n}) be a sequence of rv's and ξ be a rv s.t. for each $\omega \in \Omega, \xi_{n}(\omega) \rightarrow \xi(\omega)$ as $n \rightarrow \infty$, and there is a rv η such that $\left|\xi_{n}\right| \leq \eta$ and $E(\eta)<\infty$. Then

$$
E\left|\xi_{n}-\xi\right| \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Particularly,

$$
E\left(\xi_{n}\right) \rightarrow E(\xi) \text { as } n \rightarrow \infty . \quad \square
$$

Remark: The statement of the theorem can be slightly modified in case when the chain is not irreducible. Indeed, for a general MC, as long as y is recurrent,
$\frac{N_{n}(y)}{n}=\frac{\sum_{m=1}^{n} 1_{y}\left(X_{m}\right)}{n} \rightarrow \frac{1_{\left\{T_{y}<\infty\right\}}}{m_{y}}$ as $n \rightarrow \infty$ with prob 1,

$$
E_{x}\left(\frac{N_{n}(y)}{n}\right)=\frac{\sum_{m=1}^{n} P^{m}(x, y)}{n} \rightarrow \frac{\rho_{x y}}{m_{y}} \text { as } n \rightarrow \infty
$$

where $1_{\left\{T_{y}<\infty\right\}}$ is a rv meaning that $1_{\left\{T_{y}<\infty\right\}}=1$ if $T_{y}<\infty$, and $1_{\left\{T_{y}<\infty\right\}}=0$ if $T_{y}=\infty$.

§2.3 Waiting time \& stationary distribution

Def.:

- A state x is called positive recurrent if it is recurrent and $m_{x}=E_{x}\left(T_{x}\right)<\infty$.
- x is called null recurrent if it is recurrent and $m_{x}=E_{x}\left(T_{x}\right)=\infty$.

Note:

- For a null recurrent sate x,

$$
\lim _{n \rightarrow \infty} \frac{N_{n}(x)}{n}=0 \text { with prob } 1, \lim _{n \rightarrow \infty} \frac{E_{x}\left(N_{n}(x)\right)}{n}=0
$$

- A positive recurrent state means it comes back in finite waiting time; a null recurrent means it comes back very rarely.

THREE Theorems and THREE Corollaries are COMING soon.....

no worry

Theorem 1. If x is positive recurrent and $x \rightarrow y$, then y is also positive recurrent.

Pf.: $\because x \rightarrow y$
$\therefore P^{n_{1}}(x, y)>0$ for some $n_{1} \geqslant 1$
$\because x$ recurrent, $x \rightarrow y$
$\therefore y \rightarrow x$, then $P^{n_{2}}(y, x)>0$ for some $n_{2} \geqslant 1$.
Hence

$$
P^{n_{2}+m+n_{1}}(y, y) \geqslant P^{n_{2}}(y, x) P^{m}(x, x) P^{n_{1}}(x, y)
$$

Sum over $m=1,2, \cdots, n$, and divide by n :

$$
\frac{E_{y}\left(N_{n_{2}+n+n_{1}}(y)\right)-E_{y}\left(N_{n_{2}+n_{1}}(y)\right)}{n} \geqslant P^{n_{2}}(y, x) \frac{E_{x}\left(N_{n}(x)\right)}{n} P^{n_{1}}(x, y)
$$

Take limit $n \rightarrow \infty$:

$$
\frac{1}{m_{y}} \geqslant P^{n_{2}}(y, x) \frac{1}{m_{x}} P^{n_{1}}(x, y)>0
$$

$\therefore m_{y}<\infty$, i.e. y is positive recurrent.

Theorem 2. An irreducible $M C$ having a finite number of states must be positive recurrent.

Pf.: We know that all states are recurrent (\because finite state + irreducible).

Assuming that the theorem is false, all states are null recurrent. Note

$$
1=\sum_{y \in S} P^{m}(x, y) \quad(\text { row sum is } 1)
$$

Sum over $m=1, \cdots, n$ and divide by n :

$$
1=\sum_{y \in S} \frac{E_{x}\left(N_{n}(y)\right)}{n}
$$

Take limit:

$$
\begin{aligned}
1 & =\lim _{n \rightarrow \infty} \sum_{y \in S} \frac{E_{x}\left(N_{n}(y)\right)}{n} \\
& =\sum_{y \in S} \lim _{n \rightarrow \infty} \frac{E_{x}\left(N_{n}(y)\right)}{n} \quad(S \text { is finite }) \\
& =\sum_{y \in S} 0 \\
& =0, \text { contradiction! }
\end{aligned}
$$

Theorem 3. An irreducible positive recurrent MC has a unique SD π given by

$$
\pi(x)=\frac{1}{m_{x}}, \quad x \in S
$$

Pf.: Step 1. Uniqueness.
We first assume the SD exists, denoted by π, to show $\pi(x)=\frac{1}{m_{x}}, x \in S$. In fact,
$\pi(x)=\sum_{z} \pi(z) P^{m}(z, x) \quad$ (i.e., $\pi=\pi P^{m}, \forall m \geqslant 1$)
Sum over $m=1, \cdots, n$ and divide by n :

$$
\pi(x)=\sum_{z} \pi(z) \frac{E_{z}\left(N_{n}(x)\right)}{n}
$$

Take limit:

$$
\begin{aligned}
\pi(x) & =\lim _{n \rightarrow \infty} \sum_{z} \pi(z) \frac{E_{z}\left(N_{n}(x)\right)}{n} \\
& =\sum_{z} \pi(z) \lim _{n \rightarrow \infty} \frac{E_{z}\left(N_{n}(x)\right)}{n} \text { (infinite sum need DCT) } \\
& =\sum_{z} \pi(z) \frac{1}{m_{x}} \\
& =\frac{1}{m_{x}}
\end{aligned}
$$

Therefore, the uniqueness follows.

Added: Dominated Convergence Theorem: Suppose
(i) $\left|a_{n}(k)\right| \leqslant M<\infty, \lim _{n \rightarrow \infty} a_{n}(k)=a(k)$.
(ii) $\sum_{k=1}^{\infty} p_{k}=1$ (or just $<\infty$)

Then

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n}(k) p(k)=\sum_{k=1}^{\infty} a(k) p(k) .
$$

(e.g. $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \frac{1}{n+k}$ exists or not?)

Pf.: Apply $\epsilon-N$ argument to

$$
\underbrace{\sum_{k=1}^{N} a_{n}(k) p_{k}}_{(\mathrm{I})}+\underbrace{\sum_{k=N+1}^{\infty} a_{n}(k) p_{k}}_{(\mathrm{II})}
$$

(II) $\leq \epsilon / 2$ for a large N.
(I): can be close to $\sum_{k=1}^{N} a(k) p(k)$ as long as n is large!

Step 2. Existence.

To show existence, it suffices to show
(i) $\sum_{x \in S} \frac{1}{m_{x}}=1$. (distribution)
(ii) $\sum_{x \in S} \frac{1}{m_{x}} P(x, y)=\frac{1}{m_{y}}, \forall y$. (stationary)

Step 2.1 To show: (i) (ii) are two inequalities " \leqslant ".

- Note: $\sum_{x} P^{m}(z, x)=1, \forall z$. Then
$\frac{\sum_{m=1}^{n}(\cdots)}{n} \Rightarrow \sum_{x \in S} \frac{E_{z}\left(N_{n}(x)\right)}{n}=1$ (if S is infinite, why? Fubini!)
(It will be direct if we take limit on n then " $=$ " will follow, however, we cannot apply DCT here (why?) we need a slight modification)

$$
\begin{aligned}
& \Rightarrow \sum_{x \in S_{1}} \frac{E_{z}\left(N_{n}(x)\right)}{n} \leqslant 1, \forall S_{1} \text { finite } \\
& \Rightarrow \sum_{x \in S_{1}} \frac{1}{m_{x}} \leqslant 1, \forall S_{1} \text { finite } \Rightarrow \sum_{x \in S} \frac{1}{m_{x}} \leqslant 1
\end{aligned}
$$

- Note

$$
\begin{gathered}
\sum_{x \in S} P^{m}(z, x) P(x, y)=P^{m+1}(z, y) \\
\sum_{m=1}^{n}(\cdots) / n \Rightarrow \\
\sum_{x \in S} \frac{E_{z}\left(N_{n}(x)\right)}{n} P(x, y)=\frac{E_{z}\left(N_{n+1}(y)\right)}{n}-\frac{P(z, y)}{n} . \\
\Rightarrow \sum_{x \in S_{1}} \frac{E_{z}\left(N_{n}(x)\right)}{n} P(x, y) \leqslant \frac{E_{z}\left(N_{n+1}(y)\right)}{n}-\frac{P(z, y)}{n}, \forall S_{1} \text { finite } \\
\Rightarrow \sum_{x \in S_{1}} \frac{1}{m_{x}} P(x, y) \leqslant \frac{1}{m_{y}}, \forall S_{1} \text { finite } \\
\Rightarrow \sum_{x \in S} \frac{1}{m_{x}} P(x, y) \leqslant \frac{1}{m_{y}} .
\end{gathered}
$$

Step 2.2 To show: (i) (ii) are two equalities " $=$ ".
To show: (ii) $\sum_{x \in S} \frac{1}{m_{x}} P(x, y)=\frac{1}{m_{y}}, \forall y$.
Otherwise, $\exists y_{0}$ s.t.

$$
\sum_{x \in S} \frac{1}{m_{x}} P\left(x, y_{0}\right)<\frac{1}{m_{y_{0}}} .
$$

Then

$$
\begin{aligned}
1 \geq \sum_{y \in S} \frac{1}{m_{y}} & >\sum_{y \in S}\left[\sum_{x \in S} \frac{1}{m_{x}} P(x, y)\right] \\
& =\sum_{x \in S} \frac{1}{m_{x}}\left[\sum_{y \in S} P(x, y)\right] \\
& =\sum_{x \in S} \frac{1}{m_{x}} \quad \text { a contradiction! }
\end{aligned}
$$

To show (i): $\sum_{x \in S} \frac{1}{m_{x}}=1$.
Note $\sum_{x \in S} \frac{1}{m_{x}} \leq 1$. Let c be such that $\sum_{x \in S} \frac{c}{m_{x}}=1$.
Then

$$
\pi(x)=\frac{c}{m_{x}}, \quad x \in S
$$

is a SD. Now, by uniqueness

$$
\frac{c}{m_{x}}=\frac{1}{m_{x}}, \quad \forall x \in S
$$

$\therefore c=1$. So $\sum_{x \in S} \frac{1}{m_{x}}=1$, i.e. (i) follows.

Corollary 1. An irreducible MC with finite state space has a unique SD:

$$
\pi(x)=\frac{1}{m_{x}}, \quad x \in S
$$

e.g.: P (finite Matrix). $\pi P=\pi$. We then solve

$$
\left(P^{T}-I\right) \pi^{T}=0
$$

though the row operation. Cor 1 says that

- the solution exists and is unique.
- it gives us a way to find $m_{x}=E_{x}\left(T_{x}\right)$:

$$
m_{x}=\frac{1}{\pi(x)}, \quad x \in S
$$

$$
\left(\because m_{x}<\infty \quad \therefore \pi(x)>0\right)
$$

Corollary 2. Let the chain be irreducible, then the chain has a SD iff it is positive recurrent!

Pf.: " \Leftarrow ": It's just the theorem.
$" \Rightarrow "$: Otherwise, all states are either null recurrent or transient (why?), then in both cases,

$$
\lim _{n \rightarrow \infty} \frac{\sum_{m=1}^{n} P^{m}(z, x)}{n}=0, \quad \forall z, x \in S
$$

Let π be the SD. Take $x \in S$, then

$$
\begin{gathered}
\pi(x)=\sum_{z} \pi(z) P^{m}(z, x) \\
\sum_{m=1}^{n}(\cdots) / n \Rightarrow \pi(x)=\sum_{z} \pi(z) \frac{E_{z}\left(N_{n}(x)\right)}{n} . \\
n \rightarrow \infty+\text { DCT } \Rightarrow \pi(x)=\sum_{z} \pi(z) \cdot 0=0 . \quad \text { Contradiction! }
\end{gathered}
$$

e.g.: $P=\left[\begin{array}{rrrr}q & p & & \\ q & 0 & p & \\ q & 0 & p \\ & \ddots & \ddots & \ddots\end{array}\right], S=\{0,1,2, \cdots\}$ is infinite.

Assume: $p>0, q>0, p+q=1$ (irreducible).

Recall:

- This chain is recurrent iff $q \geqslant p$.
- The chain has a SD iff $q>p$.

Then, the chain is positive recurrent iff

$$
q>p .
$$

(Once again, in this case, $E_{x}\left(T_{x}\right)=m_{x}=\frac{1}{\pi(x)}$.)

Exercise: Consider a general birth \& death chain

$$
P=\left[\begin{array}{lllll}
r_{0} & p_{0} & & & \\
q_{1} & r_{1} & p_{1} & & \\
& q_{2} & r_{2} & p_{2} & \\
& \ddots & \ddots & \ddots
\end{array}\right]
$$

$$
\text { Row sum }=1
$$

Assume it is irreducible.
Q.: Determine if it is either positive recurrent, null recurrent, or transient.

Corollary 3. Let C be an irreducible closed set of positive recurrent states. Then the MC has a unique SD π concentrated on C :

$$
\pi(x)= \begin{cases}\frac{1}{m_{x}} & x \in C \\ 0 & \text { Otherwise }\end{cases}
$$

Indeed, we can regard $\left\{X_{n}\right\}$ as a MC on C and obtain $\pi_{C}(x)=\frac{1}{m_{x}}, x \in C$. Define

$$
\pi(x)= \begin{cases}\pi_{C}(x) & x \in C \\ 0 & \text { Otherwise }\end{cases}
$$

Then it is direct to check that π is a SD on S.
e.g.: Let $S=\left(C_{1} \cup \cdots\right) \cup S_{T}$ (finite or ∞), and

$$
P=\begin{gathered}
C_{1} \\
C_{1} \\
\vdots
\end{gathered}\left[\begin{array}{cc}
P_{1} & 0 \\
* & *
\end{array}\right], C_{1} \text { positive recurrent. }
$$

Regard $\left\{X_{n}\right\}_{n=0}^{\infty}$ as a MC on C_{1}. Then, by Chm 3, $\pi_{C_{1}}(x)=\frac{1}{m_{x}}\left(x \in C_{1}\right)$ is the SD. Define

$$
\pi(x)= \begin{cases}\pi_{C_{1}}(x) & \text { if } x \in C_{1} \\ 0 & \text { Otherwise }\end{cases}
$$

We may write $\pi=\left[\pi_{C_{1}}, 0\right]$. Check:

$$
\begin{aligned}
& \pi P=\left[\pi_{C_{1}}, 0\right]\left[\begin{array}{c}
P_{1} 0 \\
*
\end{array}\right]=\left[\pi_{C_{1}} P_{1}, 0\right]=\left[\pi_{C_{1}}, 0\right]=\pi \\
& \text { i.e. } \pi \text { is a SD of } P \text {. }
\end{aligned}
$$

Two further notes:

- If no C_{i} is positive recurrent (i.e. all states in S are either transient or null recurrent), then the chain has no SD.
- Let $P=\begin{gathered}C_{1} \\ C_{2} \\ S_{T}\end{gathered}\left[\begin{array}{ccc}P_{1} & 0 & C_{T} \\ 0 & P_{2} & 0 \\ * & * & *\end{array}\right]$,
$C_{i}(i=1,2)$: positive recurrent,
$\pi_{i}(i=1,2)$: SD of P_{i} concentrated on C_{i}.
Then

$$
\pi \stackrel{\text { def }}{=} \lambda \pi_{1}+(1-\lambda) \pi_{2}, \quad 0 \leqslant \lambda \leqslant 1
$$

is also the SD of P.

§2.4 Periodicity

Recall: For an irreducible \& positive recurrent MC,
$\lim _{n \rightarrow \infty} \frac{\sum_{m=1}^{n} p^{m}(x, y)}{n}=\lim _{n \rightarrow \infty} \frac{E_{x}\left(N_{n}(y)\right)}{n}=\frac{1}{m_{y}}=\pi(y), \forall y \in S$,
i.e. $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} P^{m}=\left[\begin{array}{c}\pi \\ \pi \\ \vdots \\ \pi\end{array}\right]$ exist
(S : finite or infinite)
Q.: How about $\lim _{n \rightarrow \infty} P^{n}$?

Example: $P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, SD: $\pi=\left[\frac{1}{2}, \frac{1}{2}\right]$. Note:

$$
P^{2 n}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad P^{2 n+1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$\therefore \lim _{n \rightarrow \infty} P^{n}$ does NOT exist.
BUT, both $\lim _{n \rightarrow \infty} P^{2 n}$ and $\lim _{n \rightarrow \infty} P^{2 n+1}$ exist!
The problem is on the "periodicity" of the chain.

Definition. The period d_{x} of a state x is the greatest common divisor (g.c.d.) of

$$
\left\{n \geqslant 1: P^{n}(x, x)>0\right\}
$$

Remarks:
(i) $1 \leqslant d_{x} \leqslant \min \left\{n \geqslant 1, P^{n}(x, x)>0\right\}$.
(ii) If $P(x, x)>0$ then $d_{x}=1$.
(iii) For Example above, $d_{0}=2=d_{1}$. Indeed, note:

$$
\begin{aligned}
& 1=P^{2}(0,0)=P^{4}(0,0)=\cdots=P^{2 n}(0,0)=\cdots, \\
& 0=P^{1}(0,0)=P^{3}(0,0)=\cdots=P^{2 n+1}(0,0)=\cdots,
\end{aligned}
$$

\therefore g.c.d. $\left\{n \geq 1: P^{n}(0,0)>0\right\}=$ g.c.d. $\{2,4, \cdots\}=2$.

Prop. For an irreducible MC, all d_{x} are equal.
Pf.: T ake $x, y \in S$.
\because The chain is irreducible
$\therefore x \rightarrow y \& y \rightarrow x$,
i.e. $\exists n_{1} \geq 1, n_{2} \geq 1$ s.t. $P^{n_{1}}(x, y)>0, P^{n_{2}}(y, x)>0$ So

$$
P^{n_{1}+n_{2}}(x, x) \geqslant P^{n_{1}}(x, y) P^{n_{2}}(y, x)>0
$$

$\therefore d_{x} \mid n_{1}+n_{2}(*)$ (i.e., d_{x} is a divisor of $n_{1}+n_{2}$)
Let $A_{y} \stackrel{\text { def }}{=}\left\{n \geqslant 1: P^{n}(y, y)>0\right\}$. Then, for $n \in A_{y}$,

$$
P^{n_{1}+n+n_{2}}(x, x) \geqslant P^{n_{1}}(x, y) P^{n}(y, y) P^{n_{2}}(y, x)>0
$$

$\therefore d_{x} \mid n_{1}+n+n_{2} \quad$ Note: $n=\left(n_{1}+n+n_{2}\right)-\left(n_{1}+n_{2}\right)$
Together with $(*) \Rightarrow d_{x} \mid n, \forall n \in A_{y}$.

$$
\therefore d_{x} \mid d_{y}
$$

The same argument gives $d_{y} \mid d_{x}$.

$$
\therefore d_{x}=d_{y} .
$$

Definition: Consider an irreducible MC.

- Note that all states have the same period $d \geqslant 1$.
The chain is called periodic with period $d \geqslant 1$.
- If $d=1$, we say the chain is aperiodic.

Remark: Consider an irreducible MC. If

$$
P(x, x)>0 \text { for some } x \in S
$$

then the chain must be aperiodic. $\left(\because d_{x}=1=d\right)$

Example 1.

$$
P=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\text { w } & 0 & 0 & q \\
0 & 1 & 0 & 0
\end{array}\right], x: \text { nonzero entries. } p>0 ; p+q=1
$$

It is obvious to see that the chain is irreducible, and

$$
d_{a}=3,
$$

(Note: $d_{a}=3$ means that the chain from a returns to a in $3 m$ steps, i.e. $P^{3 m}(a, a)>0, \forall m \geqslant 1$.)
\therefore Period $=3$.

We may directly compute: $P^{n},(n=2,3,4, \cdots)$.
For $m=1,2, \cdots$,

$$
\left.\begin{array}{c}
P^{3 m}=\left[\begin{array}{cccc}
\times & 0 & 0 & \times \\
0 & \times & 0 & 0 \\
0 & 0 & \times & 0 \\
\times & 0 & 0 & \times
\end{array}\right], \quad P^{3 m+1}=\left[\begin{array}{cccc}
0 & \times & 0 & 0 \\
0 & \rho & \times & 0 \\
\times & 0 & 0 & \times \\
0 & \times & 0 & 0
\end{array}\right] \\
P^{3 m+2}
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & \times & 0 \\
\times & 0 & 0 & \times \\
0 & \times & 0 & 0 \\
0 & 0 & \times & 0
\end{array}\right] .
$$

Recall: $d_{x}=$ g.c.d. $\left\{n \geqslant 1: P^{n}(x, x)>0\right\}$.
\therefore Period $=3$.

Example 2. Determine the period of an irreducible birth and death chain:

$$
P=\left[\begin{array}{lllll}
r_{0} & p_{0} & & & \\
q_{1} & r_{1} & p_{1} & & \\
& q_{2} & r_{2} & p_{2} & \\
& & \ddots & \ddots & \ddots
\end{array}\right], \text { all } p_{x}>0, q_{x}>0
$$

- If some $r_{x}>0$, then $P(x, x)=r_{x}>0$, hence the chain is aperiodic.
- If all $r_{x}=0$, then the chain can return to its initial state ONLY after an even number of steps.
Then, for a given state $x \in S$, any integer $n \geq 1$ such that $P^{n}(x, x)>0$ must be even.
Then $d \geqslant 2$ must be even.
Note $P^{2}(0,0)=P(0,1) P(1,0)=p_{0} q_{1}>0$.
\therefore Period $=2$.

Theorem. Let $\left\{X_{n}\right\}_{n=0}^{\infty}$ be irreducible and positive recurrent with SD π.
(i) If the chain is aperiodic, then

$$
\lim _{n \rightarrow \infty} P^{n}(x, y)=\pi(y), \quad \forall x, y \in S
$$

(ii) If the chain is periodic with period $d \geqslant 2$, then for any $x, y \in S$, there exists

$$
r \in\{0,1,2, \cdots, d-1\}
$$

which may depend on x and y, s.t.

$$
P^{n}(x, y)= \begin{cases}\xrightarrow[m \rightarrow \infty]{\longrightarrow} d \pi(y) & \text { if } n=m d+r, \\ =0 & \text { if } n \neq m d+r,\end{cases}
$$

where $m \geqslant 0$ is an integer.
Pf.: Pages 75-80 in the textbook.

Remark: Theorem tells that in case

Period $=d \geq 2$,

we are able to determine the limits of

$$
P^{m d}, \quad P^{m d+1}, \cdots, P^{m d+(d-1)} \quad(m \rightarrow \infty)
$$

Precisely, for any given x, y,

$$
P^{m d}(x, y), \quad P^{m d+1}(x, y), \cdots, P^{m d+(d-1)}(x, y)
$$

are zeros, except that
exactly one of them tends to $d \pi(y)$ as $m \rightarrow \infty$.
You have to figure out which one!

Example 3. Determine the long term behavior of P^{n} for given P.
(a) $P=\begin{gathered}0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3\end{gathered}\left[\begin{array}{cccc}\frac{1}{2} & \frac{1}{2} & 2 & 0 \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2}\end{array}\right]$.

Solution:

- Note:

\therefore irreducible.
- $\exists x$ s.t. $P(x, x)>0 . \therefore$ Period $=1$.
- Solving $\pi=\pi P$, we get the! SD

$$
\pi=\left[\frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8}\right] .
$$

- Hence, by the theorem,

$$
\lim _{n \rightarrow \infty} P^{n}=\left[\begin{array}{c}
\pi \\
\pi \\
\pi \\
\pi
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \\
\frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \\
\frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \\
\frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8}
\end{array}\right]
$$

(b) $\left.P=\begin{array}{c}0 \\ 0\end{array} \begin{array}{ccc}1 & 2 & 3 \\ 1 \\ 2 \\ 3 & 1 & 0 \\ 0 \\ \frac{1}{3} & 0 & \frac{2}{3} \\ 0 & \frac{2}{3} & 0 \\ 0 & \frac{1}{3} \\ 0 & 0 & 1\end{array}\right]$.

Solution:

- Note:

$$
0 \longleftrightarrow 1 \longleftrightarrow 2 \longleftrightarrow 3
$$

\therefore irreducible.

- Period $=2$. (By the previous example)
- Solving $\pi=\pi P$, we get the! SD: $\pi=\left[\frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8}\right]$.

$0 \leftrightarrow 1 \leftrightarrow 2 \leftrightarrow 3$

By the theorem,
if $x-y$ is even, $\begin{cases}P^{2 m+1}(x, y)=0, & \forall m, \\ P^{2 m}(x, y) \xrightarrow[m \rightarrow \infty]{\longrightarrow} 2 \pi(y) .\end{cases}$
If $x-y$ is odd, $\left\{\begin{array}{l}P^{2 m}(x, y)=0, \quad \forall m, \\ P^{2 m+1}(x, y) \xrightarrow[m \rightarrow \infty]{\longrightarrow} 2 \pi(y) .\end{array}\right.$
Recall: $\pi=\left[\frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8}\right]$.

