
Chapter 2:

Stationary Distribution
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§2.1 Stationary Distribution

Motivation: Recall the two state MC with

P =


1� p p
q 1� q

�
, 0 < p, q < 1.

We have shown (Chapter 1):

lim
n!1

P(Xn = 0) = q/(p + q)
def
= a,

lim
n!1

P(Xn = 1) = p/(p + q) = 1� a.

Denote ⇡ = [a, 1� a] (limit distribution), i.e.

⇡ = lim
n!1

[P(Xn = 0),P(Xn = 1)]| {z }
pdf of Xn

= lim
n!1

⇡0P
n, (⇤)

where ⇡0 = [P(X0 = 0),P(X0 = 1)] is the initial distribution.

Note: Here ⇡ is independent of ⇡0.
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We discuss two issues related to ⇡:

• It is direct to verify

⇡P = ⇡,

i.e. [
q

p + q
,

p

p + q
]


1� p p
q 1� q

�
= [

q

p + q
,

p

p + q
].

Hence by induction,

⇡Pn = ⇡, n = 1, 2, · · ·
It means that if the chain starts with X0 with pdf ⇡,
then at any time n = 1, 2, · · · , Xn has the same
distribution as ⇡.

Note: (⇤) also directly implies

⇡ = lim
n!1

(⇡0P
n�1)P = ⇡P .
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• One can also show:

lim
n!1

Pn =


a 1� a
a 1� a

�
=


⇡
⇡

�
.

Two ways:

(i) Diasonalize P . See Tutorial or Exercise.

(ii) Find

lim
n!1

Pn(x , y) = lim
n!1

P(Xn = y |X0 = x)

= lim
n!1

Px(Xn = y).

As proved before, for x = 0 or 1
lim
n!1

Px(Xn = 0) = a i.e. the 1st column is a,

lim
n!1

Px(Xn = 1) = 1� a i.e. the 2nd column is 1� a.
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Observe: The fact that

⇡P = ⇡ = 1·⇡
means that ⇡ is the left 1-eigenvector of P .

Thus, we may also find the limit distribution ⇡
directly by solving

[u, v ]


1� p p
q 1� q

�
= [u, v ],

i.e.

[u, v ]


�p p
q �q

�
= [0, 0], i .e.,


�p q
p �q

� 
u
v

�
=


0
0

�
.

(* u > 0, v > 0, u+v = 1 ) u =
q

p + q
, v =

p

p + q
)
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General Situaion :

If
⇡ = lim

n!1
⇡0P

n exists

for some initial distribution ⇡0,

then ⇡ satisfies

⇡ =
⇣
lim
n!1

⇡0P
n�1

⌘
P = ⇡P ,

i.e.,
⇡ = ⇡P ,

or equivalently,

⇡(y) =
X

x2S

⇡(x)P(x , y), 8 y 2 S .
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Definition: We say that a probability row-vector ⇡
is a stationary distribution for P if

⇡ = ⇡P ,

i.e. the pdf ⇡ is a left 1-eigenvector of P .

Two basic questions:

(i) Existence (9): Does every P have a SD?

(ii) Uniqueness (!): Is the SD unique?
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Two notes:

(1) If ⇡ = ⇡P has a unique solut’n then the limit
lim
n!1

⇡0Pn (if it exists) is independent of ⇡0.

(2) If lim
n!1

Pn=

2

6666664

⇡

⇡

...
⇡

3

7777775
then for any initial distri ⇡0,

lim
n!1

⇡0P
n = ⇡,

i.e. the limit exists and is independent of ⇡0.

This also suggests a way of finding the SD of P .

167/323



Proposition: Let P be a Markov matrix with finite
state space S . Assume:

(i) The left 1-eigenvector (which must exist) can be
chosen to have all nonegative entries;

(ii) 1 is a simple eigenvalue;

(iii) other eigenvalues |�i | < 1.

Then P has a
::::::::
unique

::::
SD ⇡, i.e. ⇡P = ⇡, and

lim
n!1

Pn =

2

6664

⇡
⇡
...
⇡

3

7775
.
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Pf.: (Sketch only) (See Lawler P11-15)

P = QDQ�1, D =


1 O
O M

�
, Mn ! 0

Q: columns are right eigenvectors; 1st row is

2

4
1
...
1

3

5

Q�1: rows are left eigenvectors; 1st row is a prob
vector, denoted by ⇡

) lim
n!1

Pn = lim
n!1

QDnQ�1 = Q


1 O
O O

�
Q�1 =

2

4
⇡
...
⇡

3

5
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Remarks:

(1) If
:
1
:::
is

:::::::
NOT

::
a
::::::::
simple

:::::::::::::
eigenvalue, then ⇡

::::
may

::::
not be unique: e.g.

P =


P1 0
0 P2

�

⇡1 is the SD of P1

⇡2 is the SD of P2

�
) [�⇡1, (1� �)⇡2] is the SD of P

(2) Without (iii), the limit lim
n!1

Pn
:::::
may

:::::
not exist

(but ⇡ still may exist): e.g.

P =


0 1
1 0

�
, ⇡ = [

1

2
,
1

2
],

BUT eigenvalues: ±1.
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(3) Two further Facts for finite S (without proof):

Fact a. If for some n � 1, Pn has all entries strictly
positive, then three conditions are satisfied,
therefore, P has a unique SD ⇡, and

lim
n!1

Pn =

2

4
⇡
...
⇡

3

5 .

Fact b. If P is
::::::::::::
irreducible, then P still has a unique

SD.

(But lim
n!1

Pn may not exist, e.g., P=

2

40 1

1 0

3

5 )

171/323



Computation Technique for finite S :

Case 1:
::
P

:::
is

:::::::::::::
irreducible.

⇡P = ⇡, i.e., PT⇡T = ⇡T , i.e. (PT � I )⇡T = 0.

PT � I
row operation�������!

2

6664

⇤ ⇤ · · · ⇤
0 ⇤ · · · ⇤
0 0 . . . ...
0 0 0 ⇤

3

7775
,

Upper diagonal form.

Fact b above assures that the solution exists
uniquely. (Note: Find ⇡ as a

:::::
prob

:::::::::::::
row-vector)

172/323



Case 2.
::
P

:::
is

::::::::::::
reducible.

For instance, let S = C1 [ C2 [ ST .
Reordering S accordingly, write

P =

2

4
P1 0 0
0 P2 0
S1 S2 Q

3

5 , Pn =

2

4
Pn
1 0 0
0 Pn

2 0
S1n S2n Qn

3

5

i = 1, 2 : lim
n!1

Pn
i =

2

4
⇡i
...
⇡i

3

5, ⇡i : SD of Pi ,

lim
n!1

Qn = 0,

(Chap1: For y 2 ST , lim
n!1

Pn(x , y) = 0, 8x 2 S).

In fact, all eigenvalues of Q have moduli < 1.
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) lim
n!1

Pn =

2

6666666664

2

4
⇡1
...
⇡1

3

5 0 0

0

2

4
⇡2
...
⇡2

3

50

A1 A2 0

3

7777777775

,

A1 = lim
n!1

S1n, A2 = lim
n!1

S2n:

A1(x , y) = prob from x 2 ST to y 2 C1 ::
in

:::
the

:::::
long

::::
run,

A2(x , y) = prob from x 2 ST to y 2 C2 ::
in

:::
the

:::::
long

::::
run.

Q.: How to find A1, A2?
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Solution: Assume

ST = {x1, x2, · · · , x`}.

First find

⇢Ci (x), x 2 ST , i = 1, 2,

(absorption prob of Ci , i.e. prob to enter Ci).

Then, distribute according to ⇡i , e.g.

A1 =

2

6664

⇢C1(x1)⇡1
⇢C1(x2)⇡1

...
⇢C1(x`)⇡1

3

7775
, A2 =

2

6664

⇢C2(x1)⇡2
⇢C2(x2)⇡2

...
⇢C2(x`)⇡2

3

7775
.
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Example 1. (Gambler’s ruin chain) Let

P =

0 1 2 3 42

66664

3

77775

0 1 0 0 0 0
1 1

2 0 1
2 0 0

2 0 1
2 0 1

2 0
3 0 0 1

2 0 1
2

4 0 0 0 0 1

.

Show that

lim
n!1

Pn =

0 1 2 3 4
2

66664

3

77775

0 1 0 0 0 0

1 3
4 0 0 0 1

4

2 1
2 0 0 0 1

4

3 1
4 0 0 0 3

4

4 0 0 0 0 1

.
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Solution: From P , one can check that

C1 = {0}, C2 = {4}, ST = {1, 2, 3},

and
S = C1 [ C2 [ ST .

After reordering,

P =

0 4 1 2 32

66664

3

77775

0 1 0 0 0 0
4 0 1 0 0 0
1 1

2 0 0 1
2 0

2 0 0 1
2 0 1

2
3 0 1

2 0 1
2 0

.
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Set P =

2

4
1 0
0 1 0
S Q

3

5. Then, Pn =

2

4
1 0
0 1 0
Sn Qn

3

5, and

lim
n!1

Sn = A, lim
n!1

Qn = 0,

lim
n!1

Pn =

2

4
1 0
0 1 0
A 0

3

5 .

Need to find A = A3⇥2:

Note that for i 2 ST = {1, 2, 3}, j 2 C1 [ C2 = {0, 4},

A(i , j) = prob that the chain starting at i eventually visits j

= Pi(Tj < 1) = ⇢ij ,

⇢ij = P(i , j) + P
k2ST

P(i , k)⇢kj .
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Put in matrix form

A = S + QA ) A = (I � Q)�1S .

Here,

S3⇥2 =

2

4
1
2 0
0 0
0 1

2

3

5 , Q3⇥3 =

2

4
0 1

2 0
1
2 0

1
2

0 1
2 0

3

5 , ) (I�Q)�1 =

2

4
3
2 1

1
2

1 2 1
1
2 1

3
2

3

5 .

) A = (I � Q)�1S =

2

64

3
4

1
4

1
2

1
2

1
4

3
4

3

75 .
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0 4 1 2 3

0 1 0 0 0 0

4 0 1 0 0 0

1 3
4

1
4 0 0 0

2 1
2

1
2 0 0 0

3 1
4

3
4 0 0 0

reorder���!

0 1 2 3 4

0 1 0 0 0 0

1 3
4 0 0 0 1

4

2 1
2 0 0 0 1

2

3 1
4 0 0 0 3

4

4 0 0 0 0 1

=limn!1 Pn.

Remark: Such computation also gives us a way to
find

⇢10 =
3

4
, ⇢20 =

1

2
, ⇢30 =

1

4
,

⇢14 =
1

4
, ⇢24 =

1

2
, ⇢34 =

3

4
.
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Exercise: (Tutorial)

Modify the above to the MC with

P =

2

66666664

1
3

2
3

1
2

1
2

0 0

0 1 0
1
2 0
0 0
0 0

0
0
1
2

0 1
2 0

1
2 0

1
2

0 1
2 0

3

77777775

and find lim
n!1

Pn.

181/323



Example 2. Consider the random walk on

S = {0, 1, 2, · · · } (no longer finite!)

with

P =

2

6664

q p
q 0 p
q 0 p
. . . . . . . . .

3

7775
, p, q > 0, p + q = 1.

Q.: Find the SD.

Note:

• This is an
::::::::::::
irreducible BD chain.

• The chain is recurrent i↵
1P
k=0

( qp )
k=1, i↵ q � p.

182/323



Solution: Let ⇡ be the SD. Set

xk = ⇡(k), k = 0, 1, · · ·
From ⇡ = ⇡P , i.e.,

[x0, x1, · · · ] = [x0, x1, · · · ]

2

6664

q p
q 0 p
q 0 p
. . . . . . . . .

3

7775

we get (
x0 = qx0 + qx1, i.e. px0 = qx1,

k � 1 : xk = qxk+1 + pxk�1.

) qxk+1 � pxk = qxk � pxk�1 = · · · = qx1 � px0 = 0

) xk = (
p

q
)xk�1 = · · · = (

p

q
)kx0, k = 0, 1, 2, · · ·
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(i) p < q (recurrent):

1 =
1X

k=0

xk =
1X

k=0

(
p

q
)kx0 =

x0
1� p

q

(0 <
p

q
< 1)

) x0 =
q � p

q
> 0

SD: ⇡ =
q � p

q
[1,

p

q
, (
p

q
)2, · · · ].

(ii) p = q (recurrent):
1P
k=0

(
p

q
)k=1. ⇡ does not exist.

(iii) p > q (transient): ⇡ does NOT exist.
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Exercise: Modify it to the general irreducible birth
& death chain on S = {0, 1, · · · } with

P =

2

6664

r0 p0
q1 r1 p1

q2 r2 p2
. . . . . . . . .

3

7775
row sum = 1,

all pi > 0, all qi > 0.

Q.: Find the SD ⇡.
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Example 3. Queueing model:

• In a telephone exchange, ⇠n denotes no of new
calls coming in starting at time n > 1. {⇠n}1n=1

is i.i.d. and has a Poisson distribution with rate
� > 0:

pk = e��
�k

k!
, k = 0, 1, 2, · · ·

• Suppose that each call has prob q
def
= 1� p to

finish in one unit time.

Xn
def
= no of calls in progress at time n.

Q.: Find the transition prob and the SD.
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Solution: To find

P(x , y) = P(Xn+1 = y |Xn = x),

we consider

Xn+1 = ⇠n+1 + Yn+1

with Yn+1
def
= no of calls at time n that remain at time n+ 1.

Fact:

P(Yn+1 = z |Xn = x) =

✓
x
z

◆
pz(1� p)x�z ,

0 6 z 6 k .

Note: p =non-finish prob, q = 1� p =finish prob.
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) P(x , y) = P(Xn+1 = y |Xn = x)

=
x^yX

z=0

P(Xn+1 = y ,Yn+1 = z |Xn = x)

=
x^yX

z=0

P(⇠n+1 = y � z ,Yn+1 = z |Xn = x)

=
x^yX

z=0

P(⇠n+1=y�z)P(Yn+1=z |Xn=x)

=
x^yX

z=0

e��
�y�z

(y � z)!

✓
x
z

◆
pz(1� p)x�z .

To find SD, we will verify that if X0 is Poisson then
Xn (n > 1) satisfy the same Poisson distribution.
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Lemma 1. If Xn is Poisson with rate t, then Yn+1

is Poisson with rate pt.

Pf.:
P(Yn+1 = y) = P1

x=yP(Yn+1 = y ,Xn = x)

=
1X

x=y

P(Xn = x)P(Yn+1 = y |Xn = x)

=
1X

x=y

e�t t
x

x!

✓
x
y

◆
py (1� p)x�y

=
(pt)ye�t

y !

1X

x=y

[t(1� p)]x�y

(x � y)!

=
(pt)ye�t

y !
et(1�p)

= e�pt (pt)
y

y !
, y = 0, 1, 2, · · ·
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Lemma 2. If X , Y are
::::::::::::::
independent Poisson with

rates t1 and t2 resp, then Z = X + Y is Poisson
with rate t1 + t2.

Pf.:
P(Z = z) = P(X + Y = z)

= Pz
x=0P(X + Y = z ,X = x)

= Pz
x=0P(X = x ,Y = z � x)

= Pz
x=0P(X = x)P(Y = z � x)

=
zX

x=0

e�t1
tx1
x!
e�t2

tz�x
2

(z � x)!

=
e�(t1+t2)

z!

zX

x=0

✓
z
x

◆
tx1 t

z�x
2

=
e�(t1+t2)

z!
(t1 + t2)

z , z = 0, 1, · · ·
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Two lemmas above give:

• Assume X0 is Poisson with rate t (TBD).

• X1 = ⇠1 + Y1 is Poisson with rate

�+ pt = t. () t
def
=

�

1� p
=

�

q
)

• X2 = ⇠2 + Y2 is Poisson with rate �+ pt = t.

• · · ·

• Xn = ⇠n + Yn is Poisson with rate �+ pt = t.

) The chain has a SD (Poisson, rate= �/q):

⇡(x) = e��/q (�/q)
x

x!
, x = 0, 1, · · · .
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Exercise: Check the textbook (Page 55-56) to

(i) Derive an explicit formular Pn(x , y).

(ii) Show directly that

lim
n!1

Pn(x , y) = ⇡(y), 8 x , y > 0.

(Hence, ⇡ that we have found is the unique
SD)
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Sketch: • The key is to find Pn:

X0 : t

X1 : �+ tp

X2 : �+ (�+ pt)p = tp2 + �(1 + p2)

X3 : �+ [tp2 + �(1 + p2)]p = tp3 + �(1 + p2 + p3)

... ...

Xn : tpn + �(1 + p + · · ·+ pn)

= tpn + �
1� pn

1� p
:= tn

then
1X

x=0

e�t t
x

x!
Pn(x , y) = Px(Xn = y) = e�tn t

y
n

y !
.
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Rewrite it as

1X

x=0

Pn(x , y)

x!
tx = e�� 1�pn

1�p et(1�pn)

h
tpn + �1�pn

1�p

iy

y !
,

Apply Taylor expansion and binormial expansion on the right,
do the product, and compare coe�cient of tx for each x , then

Pn(x , y) = e�� 1�pn

1�p

min(x ,y)X

z=0

✓
x
z

◆
pnz(1� pn)x�z

h
�1�pn

1�p

iy�z

(y � z)!
.

Let n ! 1, note pn ! 0 as 0  p < 1, in
P

, except for the
term of z = 0, all other terms tend to zero, then

lim
n!1

Pn(x , y) = e�
�

1�p
( �
1�p )

y

y !
= ⇡(y).
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§2.2 Average number of visits

Given {Xn}1n=0, S (finite or infinite),

Nn(y)
def
= no of visits to y in n-steps,

i.e. during times m = 1, 2, · · · , n.
We are interested in the limits of

Nn(y)

n
,

Ex(Nn(y))

n
as n ! 1.

Note:

• Nn(y)
n : proportion of the first n units of time that the

chain visits y , or average no of visits to y per unit time.

• Ex (Nn(y))
n : expected proportion for a chain starting at x ,

or frequency that the chain visits y from x .
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It is direct to see

Nn(y) =
nX

m=1

1y(Xm),

Ex(Nn(y)) =
nX

m=1

Pm(x , y).
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Case: y is transient.

Recall: Px(N(y) < 1) = 1.

lim
n!1

Nn(y) = N(y) < 1 with prob 1,

lim
n!1

Ex(Nn(y)) = Ex(N(y)) =
⇢xy

1� ⇢yy
< 1.

So,

lim
n!1

Nn(y)

n
= 0 with prob 1,

lim
n!1

Ex(Nn(y))

n
= 0.

Hence, we only consider y as a recurrent state.
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Let y be recurrent. Denote

my
def
= Ey(Ty) : the mean return time to y for

a chain starting at y .

Recall
Ty

def
= min{n > 1 : Xn = y}.
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Theorem: Suppose

{Xn}1n=0 is irreducible and recurrent.

Then

lim
n!1

Nn(y)

n
=

1

my
with prob 1,

lim
n!1

Ex(Nn(y))

n
=

1

my
, 8 x 2 S .

Remarks:

(1) Heuristically, the limit is the frequency and my is the
waiting time. They are reciprocal to each other.

(2)
:
If
::::
the

::::::
chain

::
is
::::::
NOT

:::::::::::
irreducible, the statement of Theorem

can be modified slightly; see the textbook Pages 58-59.
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Pf.: Let the chain start from y . Introduce new r.v.:

T r
y = min{n > 1 : Nn(y) = r}, r = 1, 2, · · ·

i.e. the min ptv-time of the r th visit to y . Note:

• Nn(y) = r : By time n, the chain visits y for r times.
(Warning: time 0 not counted).

• T r
y : the min positive time up to which the chain visits y

for exactly r times.

state

:• ••• • • •

• • • • • >

0 MPI mz m
,

... Mr
time

1y(X ; )={
1 i=mi .mn "imr

o otherwise 200/323



Set

W 1 def
= T 1

y = Ty (i.e. hitting time of y)

W r def
= T r

y � T r�1
y , r = 2, 3, · · ·

(i.e., waiting time between the (r � 1)th visit to y

and the r th visit to y)

Then

T r
y = W 1

y + · · ·+W r
y , r = 1, 2, · · ·

Note: {W r
y }1r=1 is i.i.d.

(it is intuitively obvious due to the Markov property; see the

textbook (page 59) for the rigorous proof)
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Apply the SLLN, we have

lim
r!1

T r

r
= lim

r!1
W 1

y +···+Wr
y

r = Ey(Ty) with prob 1

= my .

Next, let r = Nn(y), i.e. by time n, the chain visits
y for r -times, and the (r + 1)th visit to y will be
after n, hence

T r
y 6 n < T r+1

y ,

so that

T r
y

r
6 n

Nn(y)
=

n

r
<

T r+1
y

r
! my as r ! 1.

This implies that lim
n!1

n
Nn(y)

= my with prob 1.
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Moreover, we observe

lim
n!1

Ex

✓
Nn(y)

n

◆
= Ex

✓
lim
n!1

Nn(y)

n

◆
(why? DCT)

= Ex

✓
1

my

◆

=
1

my
.

Added: Theorem (Dominated convergence theorem). Let (⇠n) be a
sequence of rv’s and ⇠ be a rv s.t. for each ! 2 ⌦, ⇠n(!) ! ⇠(!) as
n ! 1, and there is a rv ⌘ such that |⇠n|  ⌘ and E (⌘) < 1. Then

E |⇠n � ⇠| ! 0 as n ! 1.

Particularly,
E (⇠n) ! E (⇠) as n ! 1.
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Remark: The statement of the theorem can be slightly
modified in case when the chain is not irreducible. In-
deed, for a general MC, as long as y is recurrent,

Nn(y)

n
=

nX

m=1

1y(Xm)

n
!

1{Ty<1}

my
as n ! 1 with prob 1,

Ex(
Nn(y)

n
) =

nX

m=1

Pm(x , y)

n
! ⇢xy

my
as n ! 1,

where 1{Ty<1} is a rv meaning that 1{Ty<1} = 1 if
Ty < 1, and 1{Ty<1} = 0 if Ty = 1.
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§2.3 Waiting time & stationary distribution

Def.:
• A state x is called positive recurrent if it is
recurrent and mx = Ex(Tx) < 1.

• x is called null recurrent if it is recurrent and
mx = Ex(Tx) = 1.

Note:
• For a null recurrent sate x ,

lim
n!1

Nn(x)

n
= 0 with prob 1, lim

n!1

Ex(Nn(x))

n
= 0.

• A positive recurrent state means it comes back
::
in

:::::
finite

:::::::
waiting

:::::
time; a null recurrent means it comes back

::::
very

:::::
rarely.
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THREE Theorems and THREE Corollaries
are COMING soon.....

no worry
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Theorem 1. If x is
:::::::::
positive recurrent and x ! y ,

then y is also
:::::::::
positive recurrent.

Pf.: * x ! y
) Pn1(x , y) > 0 for some n1 > 1
* x recurrent, x ! y
) y ! x , then Pn2(y , x) > 0 for some n2 > 1.
Hence

Pn2+m+n1(y , y) > Pn2(y , x)Pm(x , x)Pn1(x , y).

Sum over m = 1, 2, · · · , n, and divide by n:

Ey (Nn2+n+n1(y))� Ey (Nn2+n1(y))

n
> Pn2(y , x)

Ex(Nn(x))

n
Pn1(x , y).

Take limit n ! 1:
1

my
> Pn2(y , x)

1

mx
Pn1(x , y) > 0.

) my < 1, i.e. y is positive recurrent.
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Theorem 2. An
::::::::::::
irreducible MC having a

::::::
finite

number of states must be
:::::::::
positive

::::::::::::
recurrent.

Pf.: We know that all states are recurrent (* finite
state + irreducible).

Assuming that the theorem is false, all states are
null recurrent. Note

1 =
X

y2S

Pm(x , y) (row sum is 1).

Sum over m = 1, · · · , n and divide by n:

1 =
X

y2S

Ex(Nn(y))

n
.
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Take limit:

1 = lim
n!1

X

y2S

Ex(Nn(y))

n

=
X

y2S

lim
n!1

Ex(Nn(y))

n
(S is finite)

=
X

y2S

0

= 0, contradiction!
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Theorem 3. An
::::::::::::
irreducible

:::::::::
positive

:::::::::::
recurrent MC

has a unique SD ⇡ given by

⇡(x) =
1

mx
, x 2 S .

Pf.: Step 1. Uniqueness.
We first assume the SD exists, denoted by ⇡, to
show ⇡(x) = 1

mx
, x 2 S . In fact,

⇡(x) =
X

z

⇡(z)Pm(z , x) (i .e., ⇡ = ⇡Pm, 8m > 1)

Sum over m = 1, · · · , n and divide by n:

⇡(x) =
X

z

⇡(z)
Ez(Nn(x))

n
.
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Take limit:

⇡(x) = lim
n!1

X

z

⇡(z)
Ez(Nn(x))

n

=
X

z

⇡(z) lim
n!1

Ez(Nn(x))

n
(infinite sum need DCT)

=
X

z

⇡(z)
1

mx

=
1

mx
.

Therefore, the uniqueness follows.
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Added: Dominated Convergence Theorem: Suppose
(i) |an(k)| 6 M < 1, lim

n!1
an(k) = a(k).

(ii)
1P
k=1

pk = 1 (or just < 1)

Then

lim
n!1

1X

k=1

an(k)p(k) =
1X

k=1

a(k)p(k).

(e.g. lim
n!1

1P
k=1

1
n+k exists or not?)

Pf.: Apply ✏-N argument to
NX

k=1

an(k)pk

| {z }
(I)

+
1X

k=N+1

an(k)pk

| {z }
(II)

(II) ✏/2 for a large N .

(I): can be close to
NP

k=1
a(k)p(k) as long as n is large!
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Step 2. Existence.

To show existence, it su�ces to show

(i)
P
x2S

1
mx

= 1. (distribution)

(ii)
P
x2S

1
mx
P(x , y) = 1

my
, 8 y . (stationary)
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Step 2.1 To show: (i) (ii) are two inequalities “6”.

• Note:
P
x
Pm(z , x) = 1, 8 z . Then

nP

m=1
(··· )

n )
X

x2S

Ez(Nn(x))

n
= 1 (if S is infinite, why? Fubini!)

(It will be direct if we take limit on n then “=” will follow,

however, we cannot apply DCT here (why?) we need a slight

modification)

)
X

x2S1

Ez(Nn(x))

n
6 1, 8 S1 finite

)
X

x2S1

1

mx
6 1, 8 S1 finite )

X

x2S

1

mx
6 1.
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• Note X

x2S

Pm(z , x)P(x , y) = Pm+1(z , y).

nP
m=1

(··· )/n )
X

x2S

Ez(Nn(x))

n
P(x , y) =

Ez(Nn+1(y))

n
� P(z , y)

n
.

)
X

x2S1

Ez(Nn(x))

n
P(x , y) 6 Ez(Nn+1(y))

n
� P(z , y)

n
, 8 S1 finite

)
X

x2S1

1

mx
P(x , y) 6 1

my
, 8 S1 finite

)
X

x2S

1

mx
P(x , y) 6 1

my
.
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Step 2.2 To show: (i) (ii) are two equalities “=”.

To show: (ii)
P
x2S

1
mx
P(x , y) = 1

my
, 8 y .

Otherwise, 9 y0 s.t.
X

x2S

1

mx
P(x , y0) <

1

my0

.

Then

1 �
X

y2S

1

my
>

X

y2S

"
X

x2S

1

mx
P(x , y)

#

=
X

x2S

1

mx

"
X

y2S

P(x , y)

#
(Use Fubini)

=
X

x2S

1

mx
a contradiction!
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To show (i):
P
x2S

1
mx

= 1.

Note
P
x2S

1
mx

 1. Let c be such that
P
x2S

c
mx

= 1.

Then
⇡(x) =

c

mx
, x 2 S

is a SD. Now, by uniqueness

c

mx
=

1

mx
, 8x 2 S .

) c = 1. So
P
x2S

1
mx

= 1, i.e. (i) follows.
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Corollary 1. An
::::::::::::
irreducible MC with

::::::
finite state

space has a unique SD:

⇡(x) =
1

mx
, x 2 S .

e.g.: P (finite Matrix). ⇡P = ⇡. We then solve

(PT � I )⇡T = 0

though the row operation. Cor 1 says that

• the solution exists and is unique.
• it gives us a way to find mx = Ex(Tx):

mx =
1

⇡(x)
, x 2 S .

(* mx < 1 ) ⇡(x) > 0)
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Corollary 2. Let the chain be
::::::::::::
irreducible, then the

chain has a SD i↵ it is
::::::::
positive

::::::::::::
recurrent!

Pf.: “(”: It’s just the theorem.

“)”: Otherwise, all states are either null recurrent or transient (why?),
then in both cases,

lim
n!1

Pn
m=1 P

m(z,x)
n = 0, 8 z , x 2 S .

Let ⇡ be the SD. Take x 2 S , then

⇡(x) =
X

z

⇡(z)Pm(z , x).

nX

m=1

(· · · )/n ) ⇡(x) =
X

z

⇡(z)
Ez(Nn(x))

n
.

n ! 1+DCT ) ⇡(x) =
X

z

⇡(z) · 0 = 0. Contradiction!
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e.g.: P =

2

6664

q p
q 0 p
q 0 p
. . . . . . . . .

3

7775
, S = {0, 1, 2, · · · } is

infinite.

Assume: p > 0, q > 0, p + q = 1 (irreducible).

Recall:
• This chain is recurrent i↵ q > p.
• The chain has a SD i↵ q > p.

Then, the chain is positive recurrent i↵

q > p.

(Once again, in this case, Ex(Tx) = mx =
1

⇡(x) .)
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Exercise: Consider a general birth & death chain

P =

2

6664

r0 p0
q1 r1 p1

q2 r2 p2
. . . . . . . . .

3

7775
Row sum = 1

Assume it is
::::::::::::
irreducible.

Q.: Determine if it is either
:::::::::
positive

:::::::::::
recurrent,

::::
null

:::::::::::
recurrent, or

::::::::::
transient.
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Corollary 3. Let C be an
::::::::::::
irreducible

:::::::
closed set of

:::::::::
positive

:::::::::::
recurrent states. Then the MC has a unique

SD ⇡ concentrated on C :

⇡(x) =

(
1
mx

x 2 C ,

0 Otherwise.

Indeed, we can regard {Xn} as a MC on C and
obtain ⇡C (x) =

1
mx
, x 2 C . Define

⇡(x) =

(
⇡C (x) x 2 C ,

0 Otherwise.

Then it is direct to check that ⇡ is a SD on S.
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e.g.: Let S = (C1 [ · · · ) [ ST (finite or 1), and

P =

C1 · · · �
C1 P1 0
... ⇤ ⇤

, C1 positive recurrent.

Regard {Xn}1n=0 as a MC on C1. Then, by Thm 3,
⇡C1(x) =

1
mx

(x 2 C1) is the SD. Define

⇡(x) =

(
⇡C1(x) if x 2 C1,

0 Otherwise.

We may write ⇡ = [⇡C1, 0]. Check:

⇡P = [⇡C1, 0]


P1 0
⇤ ⇤

�
= [⇡C1P1, 0] = [⇡C1, 0] = ⇡,

i.e. ⇡ is a SD of P .
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Two further notes:

• If no Ci is positive recurrent (i.e. all states in S
are either transient or null recurrent), then the
chain has no SD.

• Let P =

C1 C2 ST2

4

3

5
C1 P1 0 0
C2 0 P2 0
ST ⇤ ⇤ ⇤

,

Ci (i = 1, 2): positive recurrent,
⇡i (i = 1, 2): SD of Pi concentrated on Ci .
Then

⇡
def
= �⇡1 + (1� �)⇡2, 0 6 � 6 1

is also the SD of P .
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§2.4 Periodicity

Recall: For an
::::::::::::
irreducible &

::::::::
positive

::::::::::::
recurrent MC,

lim
n!1

nP
m=1

pm(x ,y)

n
= lim

n!1
Ex(Nn(y))

n =
1

my
= ⇡(y), 8 y 2 S ,

i.e. lim
n!1

1

n

nX

m=1

Pm =

2

6664

⇡
⇡
...
⇡

3

7775
exist

(S : finite or infinite)

Q.: How about lim
n!1

Pn?
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Example: P =


0 1
1 0

�
, SD: ⇡ = [12 ,

1
2]. Note:

P2n =


1 0
0 1

�
, P2n+1 =


0 1
1 0

�

) lim
n!1

Pn does NOT exist.

BUT, both lim
n!1

P2n and lim
n!1

P2n+1 exist!

The problem is on the “periodicity” of the chain.
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Definition. The period dx of a state x is the
greatest common divisor (g.c.d.) of

{n > 1 : Pn(x , x) > 0}.

Remarks:

(i) 1 6 dx 6 min{n > 1,Pn(x , x) > 0}.
(ii) If P(x , x) > 0 then dx = 1.
(iii) For Example above, d0 = 2 = d1. Indeed, note:

1 = P2(0, 0) = P4(0, 0) = · · · = P2n(0, 0) = · · · ,
0 = P1(0, 0) = P3(0, 0) = · · · = P2n+1(0, 0) = · · · ,

) g.c.d.{n � 1 : Pn(0, 0) > 0} = g.c.d.{2, 4, · · · } = 2.
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Prop. For an irreducible MC, all dx are equal.

Pf.: T ake x , y 2 S .
* The chain is irreducible
) x ! y & y ! x ,
i.e. 9n1 � 1, n2 � 1 s.t. Pn1(x , y) > 0, Pn2(y , x) > 0

So
Pn1+n2(x , x) > Pn1(x , y)Pn2(y , x) > 0

) dx |n1 + n2 (⇤) (i.e., dx is a divisor of n1 + n2)

Let Ay
def
= {n > 1 : Pn(y , y) > 0}. Then, for n 2 Ay ,

Pn1+n+n2(x , x) > Pn1(x , y)Pn(y , y)Pn2(y , x) > 0

) dx |n1 + n + n2 Note: n = (n1 + n + n2)� (n1 + n2)
Together with (⇤)) dx |n, 8 n 2 Ay .

) dx |dy

The same argument gives dy |dx . ) dx = dy .
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Definition: Consider an irreducible MC.

• Note that all states have

the same period d > 1.

The chain is called periodic with period d > 1.

• If d = 1, we say the chain is aperiodic.

Remark: Consider an irreducible MC. If

P(x , x) > 0 for some x 2 S ,

then the chain must be aperiodic. (* dx = 1 = d)
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Example 1.

P =

2

664

0 ⇥ 0 0
0 0 ⇥ 0
⇥ 0 0 ⇥
0 ⇥ 0 0

3

775 , ⇥: nonzero entries.

state

:• ••• • • •

• • • • • >

0 MPI Mz m
,

... Mr
time

1y(X ; )={
1 i=mi .mn "imr

o otherwise

.
a > b > C > d

-

It is obvious to see that the chain is irreducible, and

da = 3,

(Note: da = 3 means that the chain from a returns to a in

3m steps, i.e. P3m(a, a) > 0, 8m > 1.)

) Period = 3. 230/323
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p

1

q
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We may directly compute: Pn, (n = 2, 3, 4, · · · ).
For m = 1, 2, · · · ,

P3m =

2

664

⇥ 0 0 ⇥
0 ⇥ 0 0
0 0 ⇥ 0
⇥ 0 0 ⇥

3

775 , P3m+1 =

2

664

0 ⇥ 0 0
0 0 ⇥ 0
⇥ 0 0 ⇥
0 ⇥ 0 0

3

775

P3m+2 =

2

664

0 0 ⇥ 0
⇥ 0 0 ⇥
0 ⇥ 0 0
0 0 ⇥ 0

3

775 .

Recall: dx = g.c.d. {n > 1 : Pn(x , x) > 0}.

) Period = 3.
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Example 2. Determine the period of an irreducible
birth and death chain:

P =

2

6664

r0 p0
q1 r1 p1

q2 r2 p2
. . . . . . . . .

3

7775
, all px > 0, qx > 0.

• If some rx > 0, then P(x , x) = rx > 0, hence the chain is
aperiodic.

• If all rx = 0, then the chain can return to its initial state
ONLY after an even number of steps.
Then, for a given state x 2 S , any integer n � 1 such
that Pn(x , x) > 0 must be even.
Then d > 2 must be even.
Note P2(0, 0) = P(0, 1)P(1, 0) = p0q1 > 0.
) Period = 2.
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Theorem. Let {Xn}1n=0 be ::::::::::::
irreducible and

:::::::::
positive

:::::::::::
recurrent with SD ⇡.

(i) If the chain is aperiodic, then

lim
n!1

Pn(x , y) = ⇡(y), 8 x , y 2 S .

(ii) If the chain is periodic with period d > 2, then
for any x , y 2 S , there exists

r 2 {0, 1, 2, · · · , d � 1}
which may depend on x and y , s.t.

Pn(x , y) =

(
���!
m!1

d⇡(y) if n = md + r ,

= 0 if n 6= md + r ,

where m > 0 is an integer.

Pf.: Pages 75-80 in the textbook.
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Remark: Theorem tells that in case

Period= d � 2,

we are able to determine the limits of

Pmd , Pmd+1, · · · ,Pmd+(d�1) (m ! 1).

Precisely, for any given x , y ,

Pmd(x , y), Pmd+1(x , y), · · · ,Pmd+(d�1)(x , y)

are zeros, except that

exactly one of them tends to d⇡(y) as m ! 1.

You have to figure out which one!
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Example 3. Determine the long term behavior of
Pn for given P .

(a) P =

0 1 2 32

664

3

775

0 1
2

1
2 0 0

1 1
6

1
2

1
3 0

2 0 1
3

1
2

1
6

3 0 0 1
2

1
2

.

Solution:
• Note:

state

:• ••• • • •

• • • • • >

0 MPI mz m
,

... Mr
time

1y(X ; )={
1 i=mi .mn "imr

o otherwise

.
a > b > C > d

÷a a A
Os> 1<>2<>3

) irreducible.
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• 9 x s.t. P(x , x) > 0. ) Period = 1.
• Solving ⇡ = ⇡P , we get the ! SD

⇡ = [
1

8
,
3

8
,
3

8
,
1

8
].

• Hence, by the theorem,

lim
n!1

Pn =

2

664

⇡
⇡
⇡
⇡

3

775 =

2

6664

1
8

3
8

3
8

1
8

1
8

3
8

3
8

1
8

1
8

3
8

3
8

1
8

1
8

3
8

3
8

1
8

3

7775
.
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(b) P =

0 1 2 32

664

3

775

0 0 1 0 0
1 1

3 0 2
3 0

2 0 2
3 0 1

3
3 0 0 1 0

.

Solution:
• Note:

0<>1< >2<>3

) irreducible.
• Period = 2. (By the previous example)
• Solving ⇡ = ⇡P , we get the ! SD: ⇡ = [18 ,

3
8 ,

3
8 ,

1
8].

237/323



0<>1< >2<>3

By the theorem,

if x � y is even,
8
<

:

P2m+1(x , y) = 0, 8m,

P2m(x , y) ����!
m!1

2⇡(y).

If x � y is odd,
8
<

:

P2m(x , y) = 0, 8m,

P2m+1(x , y) ����!
m!1

2⇡(y).

Recall: ⇡ = [18 ,
3
8 ,

3
8 ,

1
8].

) lim
m!1

P2m =

0 1 2 32

64

3

75

0 1
4 0 3

4 0
1 0 3

4 0 1
4

2 1
4 0 3

4 0
3 0 3

4 0 1
4

, lim
m!1

P2m =

0 1 2 32

64

3

75

0 0 3
4 0 1

4
1 1

4 0 3
4 0

2 0 3
4 0 1

4
3 1

4 0 3
4 0

.
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