Stochastic Processes

MATH4240 (2023/24 Term 2)
Instructor: Renjun DUAN
Course Web Page :
https://www.math.cuhk.edu.hk/course/2324/math4240

Outline I

Chapter 0: Review on probability
§0.1: Probability
§0.2 Random variables and distributions
§0.3 Expectation and variance
$\S 0.4$ Sequence of random variables
Chapter 1: Markov Chain
§1.1 Definition \& Examples
§1.2 Computations with transition probabilities
Q1. Compute PDF
Q2. Compute $\rho_{x y}$
Q3. Times of visit to a state
Q4. Decomposition of state space
§1.3 More examples
Chapter 2: Stationary Distribution
§2.1 Stationary Distribution
§2.2 Average number of visits
§2.3 Waiting time \& stationary distribution

Outline II

§2.4 Periodicity

Chapter 3: Markov Jump Process
§3.1 Introduction
§3.2 Poisson process
§3.3 Basic properties of MJP
§3.4 The birth and death process
§3.5 Limiting properties of MJP

Chapter 0:

Review on probability

§0.1: Probability

Perform an experiment:
An outcome: a particular state ω
Sample space: the set of all outcomes, Ω
An event: a subset of Ω, e.g., $A \subseteq \Omega$

Examples:

1. Toss a coin.

$$
\begin{aligned}
& \omega_{1}=H, \omega_{2}=T \\
& \Omega=\{H, T\}=\left\{\omega_{1}, \omega_{2}\right\} \\
& \text { all possible events: } A=\emptyset, \Omega,\{H\},\{T\}
\end{aligned}
$$

2. Toss 3 coins.

$$
\begin{aligned}
& \omega_{1}=(H, H, H), \omega_{2}=\ldots, \cdots, \omega_{8}=\ldots \\
& \Omega=\{(H, H, H),(H, H, T),(H, T, H),(T, H, H), \\
&(H, T, T),(T, H, T),(T, T, H),(T, T, T)\}
\end{aligned}
$$

Want an event $A \stackrel{\text { def "exactly } 2 \text { heads occur". } . \text {. }}{=}$
Then,

$$
A=\{(H, H, T),(H, T, H),(T, H, H)\}
$$

Probability measure P : a function that assigns real values in $[0,1]$ to events, satisfying
(i) $P(\Omega)=1$
(ii) $0 \leq P(A) \leq 1, \forall A$
(iii) $P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right), \forall\left\{A_{i}\right\}_{i=1}^{n}$ which is disjoint
(n finite or infinite)

Probability space (Ω, \mathcal{F}, P) :
(i) \mathcal{F} is an event space, i.e. a collection of events one is interested in, satisfying
(a) $\Omega \in \mathcal{F}$
(b) If $A \in \mathcal{F}$ then $A^{c} \in \mathcal{F}$
(c) If $A_{i} \in \mathcal{F}, i=1,2, \ldots$, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$
\mathcal{F} is a σ-field over Ω in measure theoretical term.
(ii) $P: \mathcal{F} \rightarrow[0,1]$ is a probability measure.

Examples:

1. Given Ω, the largest σ-field is the set of all subsets of Ω.
2. Given Ω, the smallest σ-field is $\mathcal{F}=\{\Phi, \Omega\}$.

Conditional probability: A, B are two events, the probability that B happens given that A occurs is

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Note:

- A, B are independent if

$$
P(B \mid A)=P(B) \text {, i.e. } P(A \cap B)=P(A) P(B)
$$

- Let A be a fixed event,

$$
P_{A}(\cdot) \stackrel{\text { def }}{=} P(\cdot \mid A)
$$

is called the conditional probability measure.

Theorem. Let $\Omega=\bigcup_{i=1}^{n} A_{i}$ where A_{1}, \ldots, A_{n} are $\bigcup_{i=1}$
disjoint events. Then, for any event B

$(i) P(B)=\sum_{i=1}^{n} P\left(B\left(A_{i}^{n}\right) P\left(A_{i}\right)\right.$
(ii) $P\left(A_{i} \mid B\right)=\frac{P\left(A_{i} \cap B\right)}{P(B)}=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}$
(Bayes' formula)

Note:

In many practical applications, we are given $P\left(B \mid A_{i}\right)$ and $P\left(A_{i}\right)$, and we want to find $P\left(A_{i} \mid B\right)$, i.e. to find the probability of the "causes"
$A_{i}(i=1,2, \ldots, n)$ subject to the outcome B.

Example: $P(B)=P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right)$ (B is caused by either A or A^{c})

Proof: $B=(B \cap A) \cup\left(B \cap A^{C}\right)$

$$
\begin{aligned}
P(B) & =P(B \cap A)+P\left(B \cap A^{C}\right) \\
& =P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right) .
\end{aligned}
$$

One more example:

Suppose that we have 3 cards that are identical in form, except that both sides of the first card are colored red, both sides of the second card are colored black, and one side of the third card is colored red and the other side black. The 3 cards are mixed up in a hat, and 1 card is randomly selected and put down on the ground.

If the upper side of the chosen card is colored red, what is the probability that the other side is colored black?

Sol.: Denote
$R R \stackrel{\text { def }}{=}$ the event that the chosen card is red-red
$\mathrm{BB} \stackrel{\text { def }}{=}$ the event that the chosen card is black-black
$R B \stackrel{\text { def }}{=}$ the event that the chosen card is red-black
$R \stackrel{\text { def }}{=}$ the event that the upper side of the chosen card is red
Then

$$
\begin{aligned}
P(\mathrm{RB} \mid \mathrm{R}) & =\frac{P(\mathrm{RB} \cap \mathrm{R})}{P(\mathrm{R})} \\
& =\frac{P(\mathrm{R} \mid \mathrm{RB}) P(\mathrm{RB})}{P(\mathrm{R} \mid \mathrm{RR}) P(\mathrm{RR})+P(\mathrm{R} \mid \mathrm{BB}) P(\mathrm{BB})+P(\mathrm{R} \mid \mathrm{RB}) P(\mathrm{RB})} \\
& =\frac{\frac{1}{2} \cdot \frac{1}{3}}{1 \cdot \frac{1}{3}+0 \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{1}{3}} \\
& =\frac{1}{3} .
\end{aligned}
$$

§0.2 Random variables and distributions

Example: Toss a coin n-times.
$\Omega=\left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right): \omega_{i}=H\right.$ or $\left.T\right\}$
\sharp of $\Omega=2^{n}$
$P(\{\omega\})=\frac{1}{2^{n}}$
Let X denote the number of heads, then X takes values in $\{0,1,2, \ldots, n\}$,
Let $k=0,1, \ldots, n$, then $X=k$ means
the event that we get k number of heads,
$P(X=k)=\frac{\binom{n}{k}}{2^{n}}$.

Random variable: A random variable (r.v.) X on (Ω, \mathcal{F}, P) is to assign an outcome with a real number

$$
\begin{gathered}
X: \Omega \rightarrow \mathbb{R} \\
\Omega \ni \omega \mapsto X(\omega) \in \mathbb{R}
\end{gathered}
$$

Note: Let $R_{X}=$ the set of all possible values of X on Ω, then R_{X} is either "discrete" or "continuous": Case 1: R_{x} is a discrete set. In this case, X is called a discrete r.v.
Case 2: R_{X} is an interval of \mathbb{R} or itself. In this case, X is called a continuous r.v.

Discrete random variable: Assume

$$
X(\Omega)=\{k\}_{k=0}^{N} \quad(N \text { finite or infinite })
$$

Then the values

$$
p_{k}=P(X=k),(k=0,1, \ldots, N)
$$

is called the probability density function (p.d.f.).
Note: $\{X=k\} \stackrel{\text { def }}{=}\{\omega \in \Omega: X(\omega)=k\} \in \mathcal{F}$

Examples (Important!)

1. Binomial distribution

We perform n independent trials. At each trial, the prob of success is p, and the prob of failure is $1-p$.

Let X denote the number of successes in n trials. X has the p.d.f.

$$
\begin{aligned}
P(X=k) & =\binom{n}{k} p^{k}(1-p)^{n-k}, 0 \leq k \leq n . \\
& \stackrel{\text { def }}{=} B(n, p)
\end{aligned}
$$

2. Poisson distribution:

$$
P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, k=0,1,2, \ldots
$$

For instance, X counts the number of arrivals in a unit time with rate of arrivals given by $\lambda>0$.

Theorem: For each $k=0,1, \cdots$

$$
\lim _{n \rightarrow \infty, n p=\lambda}\binom{n}{k} p^{k}(1-p)^{n-k}=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

Note: Therefore, the Poisson distribution can be used to approximate the Binomial distribution when p is small and n is large compared to k.

3. Geometric distribution:

$$
P(X=k)=p(1-p)^{k-1}, k=1,2, \ldots
$$

is the prob that the first occurrence of success requires k independent trials, each with success probability p .
X denotes the number of trials for the first success.

Continuous random variable:

If

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

then f is called a density function of X.

Note:
the event " $a \leq X \leq b$ " def $\{\omega \in \Omega: a \leq X(\omega) \leq b\}$

Examples (Important!)

1. Uniform distribution:

$$
f(t)= \begin{cases}\frac{1}{b-a}, & a \leq t \leq b \\ 0, & \text { otherwise }\end{cases}
$$

2. Exponential distribution:

$$
f(t)= \begin{cases}\lambda e^{-\lambda t}, & t \geq 0 \\ 0, & t<0\end{cases}
$$

3. Normal distribution:

$$
f(t)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(t-\mu)^{2}}{2 \sigma^{2}}} \stackrel{\text { def }}{=} N\left(\mu, \sigma^{2}\right)
$$

$N(0,1)$: standard normal density.

Exercise: Assume X, Y are two independent continuous (or discrete) r.v. with densities f, g (or $\left.\left(p_{k}\right),\left(q_{k}\right)\right)$.

Find the density function for the random variable $Z=X+Y$.

§0.3 Expectation and variance

The expectation (or mean) of X :

$$
\mu=E(X)=\sum_{k} k p_{k} \text { or } \int_{-\infty}^{\infty} t f(t) d t
$$

The $2^{\text {nd }}$ moment of X :

$$
E\left(X^{2}\right)=\sum_{k} k^{2} p_{k}, \text { or } \int_{-\infty}^{\infty} t^{2} f(t) d t
$$

The variance of X :

$$
\sigma^{2} \stackrel{\text { def }}{=} \operatorname{Var}(X)=E(X-\mu)^{2}=E\left(X^{2}\right)-\mu^{2}
$$

(a measurement of how spread the distribution is)

Conditional expectation:

Discrete case: Suppose (X, Y) has a joint density

$$
\begin{aligned}
p\left(x_{i}, y_{i}\right) & \stackrel{\text { def }}{=} P\left(X=x_{i}, Y=y_{i}\right) \\
E\left(Y \mid X=x_{i}\right) & =\sum_{j} y_{j} P\left(Y=y_{j} \mid X=x_{i}\right) \\
& =\sum_{j} y_{j} \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right)}, p\left(x_{i}\right)=\sum_{j} p\left(x_{i}, y_{j}\right)
\end{aligned}
$$

Note:
a. $P\left(Y=y_{j} \mid X=x_{i}\right)$ is the conditioned density function of Y given $X=x_{i}$.
b. $E\left(Y \mid X=x_{i}\right)$ is a function of x_{i}, and thus regarded as a r.v. on the σ-field generated by X, denoted by $E(Y \mid X)$.

Continuous case: Let $f(x, y)$ be such that

$$
P(X \leq x, Y \leq y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d u d v
$$

Then,

$$
\begin{gathered}
E(Y \mid X=x)=\int_{R_{Y}} y \frac{f(x, y)}{f(x)} d y \\
f(x)=\int_{R_{Y}} f(x, y) d y
\end{gathered}
$$

Here $E(Y \mid X)$ can be understood to be a r.v. on the σ-field generated by X.

§0.4 Sequence of random variables

Repeat a random experiment independently. We obtain a sequence of random variables which are independent and identically distributed (i.i.d)

$$
\left\{X_{n}\right\}_{n=0}^{\infty}
$$

Two basic theorems are:

- Law of Large Number
- Central Limit Theorem
(Ref: Ross p.389)

However, in many cases $\left\{X_{n}\right\}_{n=0}^{\infty}$ may not be independent. There exists dependence in a certain way.

In general, we call

- $\left\{X_{n}\right\}_{n=0}^{\infty}$ a discrete time stochastic process, and
- $\left\{X_{t}\right\}_{t \geq 0}$ a continuous time stochastic process.

We will mainly consider the
"Markov" processes
(to be defined) in the discrete time and continuous time.

Example 1.1. A frog hops about on 7 lily pads. The numbers next to arrows show the probabilities with which, at the next jump, he jumps to a neighbouring lily pad (and when out-going probabilities sum to less than 1 he stays where he is with the remaining probability).

There are 7 'states' (lily pads). In the matrix P the element $P_{57}(=1 / 2)$ is the prob that, when starting in state 5 , the next jump takes the frog t state 7 .

Some questions we may want to know:

1. Starting in state 1 , what is the prob that we are still in state 1 after 3 steps? after 5 steps? or after 1000 steps?
2. Starting in state 4 , what is the prob that we ever reach state 7 ?
3. Starting in state 4 , how long on average does it take to reach either 3 or 7 ?
4. Starting in state 2, what is the long-run proportion of time spent in state 3 ?

We can answer those by the end of this course _—End of Chapter 0

Chapter 1:

Markov Chain

§1.1: Definition \& Examples

Example:

- Consider the weather ($0=$ Sunny, $1=$ Rainy, $2=$ Cloundy) of days in Hong Kong.
- Let X_{0} be a r.v. describing the weather of the Oth day, then

$$
x_{0}=0,1, \text { or } 2,
$$

i.e. X_{0} takes values in

$$
S:=\{0,1,2\} .
$$

- Similarly, for $n \geq 0$ let X_{n} be a r.v. describing the weather of the nth day, then $X_{n}=0,1$, or 2 , i.e. X_{n} takes values in the same state space S.
- In the end we get a chain $\left\{X_{n}\right\}_{n \geq 0}$.

Definitions:

- Let S be a finite or countably infinite set of integers.

For instance, $S=\{0,1,2, \ldots, N\}$, or
$S=\{0,1,2, \ldots\}$, or $S=\{\ldots,-1,0,1, \ldots\}$.
We call each element of S a state and S the state space.

- Let $\left\{X_{n}\right\}_{n=0}^{\infty}$ be a sequence of r.v. taking values in S, defined on a common probability space (Ω, \mathcal{F}, P).

Notation for the future:

- For random variables, we use

$$
X, Y, Z, \cdots
$$

- For states (which are values of random variables), we use

$$
x, y, z, \cdots \in S
$$

or

$$
x_{i}, y_{i}, z_{i}, \cdots \in S
$$

or

$$
i, j, k, \cdots \in S
$$

Def: $\left\{X_{n}\right\}_{n=0}^{\infty}$ is a Markov chain if

$$
\begin{align*}
P\left(X_{n+1}\right. & \left.=x_{n+1} \mid X_{0}=x_{0}, \ldots, X_{n-1}=x_{n-1}, X_{n}=x_{n}\right) \\
& =P\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right) . \quad(*) \tag{*}
\end{align*}
$$

Note:

- (*) is called the Markov property which says that given the present state, the past states have no influence on the future!
- $P\left(X_{n+1}=y \mid X_{n}=x\right)$ is called the transition probability. If it is independent of n , we denote

$$
P(x, y)=P\left(X_{n+1}=y \mid X_{n}=x\right)=P\left(X_{1}=y \mid X_{0}=x\right)
$$

which is the transition probability from state x to state y. In such case, $\left\{X_{n}\right\}_{n=0}^{\infty}$ is called a time-homogeneous Markov chain.

It is clear that
(i) $P(x, y) \geq 0$.
(ii) $\sum_{y \in S} P(x, y)=1$.

Proof:

(i) $P(x, y)=P\left(X_{n+1}=y \mid X_{n}=x\right) \geq 0$.
(ii) $\sum_{y \in S} P(x, y)=\sum_{y \in S} P\left(X_{n+1}=y \mid X_{n}=x\right)=1$.
e.g. for $S=\{0,1,2, \ldots, N\}$ (N finite or ∞), we may express all the transition probabilities

$$
P(x, y), \quad x, y \in S
$$

as a matrix form:

$$
\begin{aligned}
P & =[P(x, y)](\text { or }[P(i, j)]) \\
& =\left[\begin{array}{cccc}
P(0,0) & P(0,1) & \cdots & P(0, N) \\
P(1,0) & P(1,1) & \cdots & P(1, N) \\
\vdots & \vdots & \ddots & \vdots \\
P(N, 0) & P(N, 1) & \cdots & P(N, N)
\end{array}\right]
\end{aligned}
$$

which is called the Markov matrix (or transition matrix) (Note: each row vector is a probability vector).

Example 1. Toss a possibly biased coin repeatedly with prob p for H and $1-p$ for T.
Q.: Set up the model as a Markov chain.

Example 2. Consider a machine that at the start of the day is broken down or in operation. Assume
(i) if it is broken down, the prob that it will be repaired and in operation on the next day is p, $(0<p<1)$.
(ii) if it is in operation, the prob that it will be broken down on the next day is $q,(0<q<1)$.

Q: Set up the model as a Markov chain. Further,
(a) Find the transition prob.
(b) Find the prob that the machine is broken down on the $n^{\text {th }}$ day.
(c) In the long term, what is the prob that the machine is broken down on a day.

Example 3 (Random walk):
Let $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ be i.i.d. r.v. taking values in

$$
S=\{\cdots,-1,0,1, \cdots\}
$$

and having a pdf f, i.e. for each i

$$
P\left(\xi_{i}=k\right)=f(k), \quad k=0, \pm 1, \pm 2, \cdots
$$

Let $X_{n}=X_{0}+\xi_{1}+\cdots+\xi_{n}$, where X_{0} is the initial position independent of $\left\{\xi_{i}\right\}_{i=1}^{\infty}$. Then,

$$
\begin{aligned}
P(x, y) & =P\left(X_{n+1}=y \mid X_{n}=x\right) \\
& =P\left(\xi_{n+1}=y-x \mid X_{n}=x\right) \\
& =P\left(\xi_{n+1}=y-x\right) \\
& =f(y-x) .
\end{aligned}
$$

A simple random walk:
Consider a move to left or right with prob $p, 1-p$ resp, i.e. $\xi_{i}=+1$ or -1 with prob $p, 1-p$ resp. How does the chain behave as $n \rightarrow \infty$?

Example 4 (Gambler's ruin chain)
A gambler starts out with a certain amount and bets against the house.
(i) Each time he wins or loses $\$ 1$ with prob p and $q=1-p$ resp.
(ii) If he reaches $\$ 0$, he is ruined and his amount remain \$0. (he quits playing)
Q.: Set up the model as a Markov chain.

Let X_{n} denote the amount he has at the n-th stage.
$S=\{0,1,2, \cdots\}$.

- For $x=0$,
$P(0,0)=1$,
$P(0, y)=0, y=1,2, \cdots$

Def: A state $a \in S$ is absorbing if $P(a, a)=1$,
i.e. $P(a, y)=0, \forall y \neq a$.
$\therefore 0$ is an absorbing state.

- For $x>0$,

$$
P(x, y)= \begin{cases}p & y=x+1 \\ 1-p & y=x-1 \\ 0 & \text { otherwise }\end{cases}
$$

$$
P=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & \cdots \\
1-p & 0 & p & \cdots & \cdots \\
0 & 1-p & 0 & p & \cdots \\
\cdots & \cdots & \ddots & \ddots & \ddots
\end{array}\right]
$$

A modification of the model: Add a rule
(iii) If he reaches $\$ \mathrm{~N}$, he quits playing.

Then,
$S=\{0,1, \cdots, N\}$.
0 and N are absorbing,
$P(x, y)=\left\{\begin{array}{ll}p & y=x+1 \\ 1-p & y=x-1 \\ 0 & \text { otherwise }\end{array} \quad\right.$ for $1 \leq x \leq N-1$.

$$
P=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & \cdots & \cdots \\
1-p & 0 & p & \cdots & \cdots & \cdots \\
0 & 1-p & 0 & p & \cdots & \cdots \\
\cdots & \cdots & \ddots & \ddots & \ddots & \cdots \\
\cdots & \cdots & \cdots & 1-p & 0 & p
\end{array}\right]
$$

Alternative view to the above modified "gambler's ruin chain": Two gamblers start a series of $\$ 1$ bets against each other.
(i) The total amount is $\$ N$.
(ii) $p=$ prob of the $1^{\text {st }}$ gambler wining
$q=1-p=$ prob of the $2^{\text {nd }}$ gambler winning.
(iii) The game is over when one of them losses all.
$X_{n} \stackrel{\text { def }}{=} \$$ of the $1^{\text {st }}$ gambler at the $n^{\text {th }}$ stage
Q:

- What is the expected value?
- Wo has higher prob of winning?
- How long does the game last?

Remark: The more general form of the chains in examples 3 \& 4:

$$
P(x, y)= \begin{cases}p_{x} & y=x-1 \\ q_{x} & y=x+1 \\ r_{x} & y=x \\ 0 & \text { otherwise }\end{cases}
$$

which corresponds to the "birth \& death" chain. Here

$$
\begin{gathered}
p_{x}, q_{x}, r_{x} \geq 0 \\
p_{x}+q_{x}+r_{x}=1
\end{gathered}
$$

Example 5 (Queueing chain)

Consider a check out counter at a supermarket.
(i) Let ξ_{n} denote the number of arrivals in the $n^{\text {th }}$ period (say, one minute). Then $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ is i.i.d. r.v. having pdf f (usually Poisson distribution).
(ii) Suppose that if there are any customers waiting for service at the beginning of any given period, then exactly one customer will be served during that period.
Q.: Set up the model as a Markov chain.

- $n=0$:
$X_{0} \stackrel{\text { def }}{=}$ the number of persons on the line initially.
- $n \geq 1$:
$X_{n} \stackrel{\text { def }}{=}$ the number of persons on the line present at the end of the $n^{t h}$ period.
- Then,

$$
X_{n+1}= \begin{cases}0+\xi_{n+1} & \text { if } \quad X_{n}=0 \\ X_{n}+\xi_{n+1}-1 & \text { if } \quad X_{n} \geq 1\end{cases}
$$

- For $x=0$,

$$
\begin{aligned}
P(0, y) & =P\left(X_{n+1}=y \mid X_{n}=0\right) \\
& =P\left(\xi_{n+1}=y \mid X_{n}=0\right) \\
& =P\left(\xi_{n+1}=y\right) \\
& =f(y)
\end{aligned}
$$

- For $x \geq 1$,

$$
\begin{aligned}
P(x, y) & =P\left(X_{n+1}=y \mid X_{n}=x\right) \\
& =P\left(\xi_{n+1}=y-x+1 \mid X_{n}=x\right) \\
& =P\left(\xi_{n+1}=y-x+1\right) \\
& =f(y-x+1) .
\end{aligned}
$$

For instance, f is Poisson:

$$
f(k)=P\left(\xi_{n}=k\right)=e^{-\lambda} \frac{\lambda^{k}}{k!}, k=0,1,2, \cdots
$$

Then

$$
P=e^{-\lambda}\left[\begin{array}{ccccc}
1 & \lambda & \frac{\lambda^{2}}{2!} & \frac{\lambda^{3}}{3!} & \cdots \\
1 & \lambda & \frac{\lambda^{2}}{2!} & \frac{\lambda^{3}}{3!} & \cdots \\
0 & 1 & \lambda & \frac{\lambda^{2}}{2!} & \cdots \\
\cdots & \ddots & \ddots & \ddots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

Example 6 (Branching chain, population growth)
Each individual generates ξ offspring in the next generation independently.

$X_{n} \stackrel{\text { def }}{=}$ the total NO in the $n^{t h}$ generation.

$$
P(x, y)=P\left(\xi_{1}+\xi_{2}+\cdots+\xi_{x}=y\right)
$$

Question concerns the extinction or growth of the population!

§1.2 Computations with transition probabilities

Setup:

- $\left\{X_{n}\right\}_{n=0}^{\infty}$: a time-homogeneous Markov chain
- $S=\{0,1,2, \ldots, N\}$: state space (N : finite or ∞)
- $P=[P(x, y)]=\left[P\left(X_{n+1}=y \mid X_{n}=x\right)\right]$: transition prob matrix

Question 1: Given pdf of X_{0}, can one compute pdf of X_{n} for any $n \geq 1$?

Let the pdf of X_{0} be

$$
\pi_{k}^{(0)} \stackrel{\text { def }}{=} P\left(X_{0}=k\right), \quad k=0,1, \cdots, N,
$$

or equivalently we write in the prob row-vector form

$$
\pi^{(0)}=\left[\pi_{0}^{(0)}, \pi_{1}^{(0)}, \cdots, \pi_{N}^{(0)}\right]
$$

- $n=1: P\left(X_{1}=k\right), k \in S$? or $\pi^{(1)}=\left[\pi_{0}^{(1)}, \cdots, \pi_{N}^{(1)}\right]$?

$$
\begin{aligned}
P\left(X_{1}=k\right) & =\sum_{i \in S} P\left(X_{1}=k, X_{0}=i\right) \\
& =\sum_{i \in S} P\left(X_{1}=k \mid X_{0}=i\right) P\left(X_{0}=i\right) \\
& =\left[P\left(X_{0}=0\right), P\left(X_{0}=1\right), \ldots, P\left(X_{0}=N\right)\right]\left[\begin{array}{c}
P(0, k) \\
P(1, k) \\
\vdots \\
P(N, k)
\end{array}\right]
\end{aligned}
$$

Write them for $k=0,1, \cdots, N$ in matrix:
$\left[P\left(X_{1}=0\right), P\left(X_{1}=1\right), \ldots, P\left(X_{1}=N\right)\right]$
$=\left[P\left(X_{0}=0\right), P\left(X_{0}=1\right), \ldots, P\left(X_{0}=N\right)\right]\left[\begin{array}{cccc}P(0,0) & P(0,1) & \cdots & P(0, N) \\ P(1,0) & P(1,1) & \cdots & P(1, N) \\ \vdots & \vdots & \ddots & \vdots \\ P(N, 0) & P(N, 1) & \cdots & P(N, N)\end{array}\right]$
i.e.

$$
\pi^{(1)}=\pi^{(0)} P
$$

- In general, for $n \geq 1$, setting the pdf of X_{n} as a probability row-vector in the form

$$
\pi^{(n)}=\left[P\left(X_{n}=0\right), P\left(X_{n}=1\right), \cdots, P\left(X_{n}=N\right)\right]
$$

Then,

$$
\pi^{(n)}=\pi^{(n-1)} P \text {. }
$$

- Then, by iteration,

$$
\begin{aligned}
\pi^{(n)} & =\pi^{(n-1)} P \\
& =\pi^{(n-2)} P \cdot P \\
& =\cdots \\
& =\pi^{(0)} \underbrace{P \cdot P \cdot \ldots \cdot P}_{n \text { terms }} \\
& =\pi^{(0)} P^{n}
\end{aligned}
$$

where

$$
P^{n}=\underbrace{P \cdot P \cdot \ldots \cdot P}_{\text {product of } \mathrm{n} \text { terms }}
$$

Theorem: $\pi^{(n)}=\pi^{(0)} P^{n}, n=1,2, \cdots$

Remark: How to compute the matrix product

$$
P^{n}:=\underbrace{P \cdot P \cdots P}_{n \text { terms }}, \quad n=2,3, \cdots
$$

Indeed, for $x, y \in S$,

$$
\begin{aligned}
P^{2}(x, y) & =\sum_{x_{1} \in S} P\left(x, x_{1}\right) P\left(x_{1}, y\right) \\
P^{3}(x, y) & =\sum_{x_{1}} \sum_{x_{2}} P\left(x, x_{1}\right) P\left(x_{1}, x_{2}\right) P\left(x_{2}, y\right) \\
& \cdots \\
P^{n}(x, y) & =\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{n-1}} P\left(x, x_{1}\right) P\left(x_{1}, x_{2}\right) \cdots P\left(x_{n-1}, y\right) .
\end{aligned}
$$

Proof: Left for an exercise. Argument: use induction in n and the formula $P^{n}=P^{n-1} \cdot P$.

Proposition:

(i) $P\left(X_{n}=y\right)=\sum_{x} \pi^{(0)}(x) P^{n}(x, y)$.
(ii) $P\left(X_{n}=y \mid X_{0}=x\right)=P^{n}(x, y)$.

Proof: (i) is a direct consequence of the formula $\pi^{(n)}=\pi^{(0)} P^{n}$. To show (ii),

$$
\begin{aligned}
& P\left(X_{n}=y \mid X_{0}=x\right) \\
& =P\left(X_{n}=y, X_{n-1} \in S, \cdots, x_{1} \in S \mid X_{0}=x\right) \\
& =\sum_{x_{1} \in S} \cdots \sum_{x_{n-1} \in S} P\left(X_{n}=y, X_{n-1}=x_{n-1}, \cdots, x_{1}=x_{1} \mid X_{0}=x\right) \text { (tutorial) } \\
& =\sum_{x_{1}, \cdots, x_{n-1} \in S} \frac{P\left(X_{n}=y, X_{n-1}=x_{n-1}, \cdots, X_{1}=x_{1}, x_{0}=x\right)}{P\left(X_{0}=x\right)} \\
& =\sum_{x_{1}, \cdots, x_{n-1} \in S} \frac{P\left(X_{0}=x\right) P\left(x_{0}, x_{1}\right) \cdots P\left(x_{n-1}, y\right)}{P\left(X_{0}=x\right)} \text { (proof later) } \\
& =\sum_{x_{1}, \cdots, x_{n-1} \in S} P\left(x, x_{1}\right) \cdots P\left(x_{n-1}, y\right)=P^{n}(x, y) .
\end{aligned}
$$

Claim:

$$
\begin{aligned}
& P\left(X_{0}=x_{0}, X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right) \\
& =P\left(X_{0}=x_{0}\right) P\left(x_{0}, x_{1}\right) \cdots P\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

Proof of claim:

$$
\begin{aligned}
& P(\underbrace{X_{0}=x_{0}, X_{1}=x_{1}, \cdots}_{A}, \underbrace{X_{n}=x_{n}}_{B}) \\
& =P\left(X_{n}=x_{n} \mid X_{0}=x_{0}, \cdots, X_{n-1}=x_{n-1}\right) \\
& \quad \cdot P\left(X_{0}=x_{0}, \cdots, X_{n-1}=x_{n-1}\right) \\
& =P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right) P\left(X_{0}=x_{0}, X_{1}=x_{1}, \cdots, X_{n-1}=x_{n-1}\right) \\
& =P\left(x_{n-1}, x_{n}\right) P\left(X_{0}=x_{0}, X_{1}=x_{1}, \cdots, X_{n-1}=x_{n-1}\right) \\
& =\cdots \\
& =P\left(x_{n-1}, x_{n}\right) P\left(x_{n-2}, x_{n-1}\right) \cdots P\left(x_{0}, x_{1}\right) P\left(X_{0}=x_{0}\right) .
\end{aligned}
$$

Remark: (ii) also immediately implies (i). In fact,

$$
\begin{gathered}
P\left(X_{n}=y\right) \stackrel{\text { by def }}{=} \sum_{x} P\left(X_{n}=y \mid X_{0}=x\right) P\left(X_{0}=x\right) \\
\stackrel{\text { by (ii) }}{=} \sum_{x} P^{n}(x, y) \pi^{(0)}(x) .
\end{gathered}
$$

Definition:

$$
P^{m}(x, y),(m=0,1, \cdots)
$$

is called the m-step transition function, which gives the prob of going from state x to state y in m steps. Here we set

$$
P^{0}(x, y)=\delta_{x y}= \begin{cases}1, & \text { if } x=y \\ 0, & \text { otherwise }\end{cases}
$$

Correspondingly, P^{m} is called the m-step transition matrix.

Proposition:

$$
P\left(X_{n+m}=y \mid X_{n}=x\right)=P^{m}(x, y)
$$

Proof

$$
\begin{aligned}
& P\left(X_{n+m}=y \mid X_{n}=x\right) \\
& =P\left(X_{n+m}=y, x_{n+m-1} \in S, \cdots, x_{n+1} \in S \mid X_{n}=x\right) \\
& =\sum_{x_{n+m-1}} \cdots \sum_{x_{n+1}} P\left(X_{n+m}=y, x_{n+m-1}=x_{n+m-1}, \cdots, x_{n+1}=x_{n+1} \mid X_{n}=x\right) \\
& =\sum_{x_{n+1}, \cdots, x_{n+m-1}} P\left(X_{n+m}=y, \cdots, x_{n+1}=x_{n+1} \mid X_{0} \in S, \cdots, x_{n-1} \in S, x_{n}=x\right)(*) \\
& =\sum_{x_{n+1}, \cdots, x_{n+m-1}} P\left(x, x_{n+1}\right) \cdots P\left(x_{n+m-1}, y\right) \quad \text { (see below) } \\
& =P^{m}(x, y) . \quad\left(\text { by def of } P^{m}\right)
\end{aligned}
$$

Each term in the sum ($*$) is equal to

$$
\begin{gathered}
P\left(X_{n+m}=y, \cdots, X_{n+1}=x_{n+1} \mid X_{0}=x_{0}, \cdots, X_{n-1}=x_{n-1}, X_{n}=x\right) \\
=P\left(X_{n+m}=y, x_{n+m-1}, \cdots, x_{0}=x_{0}\right) / P\left(X_{n}=x, x_{n-1}=x_{n-1}, \cdots, x_{0}=x_{0}\right) \\
=\frac{P\left(X_{0}=x_{0}\right) P\left(x_{0}, x_{1}\right) \cdots P\left(x, x_{n+1}\right) P\left(x_{n+1}, x_{n+2}\right) \cdots P\left(X_{n+m-1}, y\right)}{P\left(X_{0}=x_{0}\right) P\left(x_{0}, x_{1}\right) \cdots P\left(x_{n-1}, x\right)} \\
=P\left(x, x_{n+1}\right) \cdots P\left(x_{n+m-1}, y\right) .
\end{gathered}
$$

Remark: To compute

$$
\begin{aligned}
& P\left(X_{n}=y \mid X_{0}=x\right) \\
& =P\left(X_{1+n}=y \mid X_{1}=x\right) \\
& =P\left(X_{2+n}=y \mid X_{2}=x\right) \\
& =\cdots \\
& =P\left(X_{m+n}=y \mid X_{m}=x\right), \quad m=0,1,2, \cdots
\end{aligned}
$$

is equivalent to compute $P^{n}(x, y)$, that is to find P^{n}.

For n large, one can reduce P to a diagonal matrix (if possible)

$$
P=Q D Q^{-1}
$$

where $D=\left[\begin{array}{ccc}\lambda_{0} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{N}\end{array}\right]$, and Q is the matrix for
change basis consisting of eigenvectors. Then

$$
P^{n}=\left[Q D Q^{-1}\right]^{n}=Q D^{n} Q^{-1}=Q\left[\begin{array}{ccc}
\lambda_{0}^{n} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{N}^{n}
\end{array}\right] Q^{-1}
$$

Hence P^{n} can be calculated in such situation.
Exercise: Do this for the two-state Markov matrix.

Question 2: How to compute the conditional prob that the chain visits y in finite time given that it starts from x ?

We set it as $\rho_{x y}$, then

$$
\rho_{x y}=P\left(\exists n \geq 1 \text { such that } X_{n}=y \mid X_{0}=x\right)
$$

We are interested in a state x such that

$$
\rho_{x x}=1, \text { or } \rho_{x x}<1 .
$$

Def (Hitting Time):
Let $A \subseteq S$. The hitting time T_{A} of A is defined by

$$
T_{A} \stackrel{\text { def }}{=} \min \left\{n \geq 1: X_{n} \in A\right\} .
$$

Rks:

- $T_{A}=$ the first positive time the chain hits A.
T_{A} is a r.v. Range of $T_{A}=\{1,2,3, \cdots\} \cup\{\infty\}$.
Convention: $T_{A}=\infty$ if $X_{n} \notin A$ for all $n \geq 1$.
For $m=1,2, \cdots$

$$
\left\{T_{A}=m\right\}=\left\{X_{1} \notin A, \cdots, X_{m-1} \notin A, X_{m} \in A\right\} .
$$

- Convention:

$$
T_{y} \stackrel{\text { def }}{=} T_{\{y\}}=\min \left\{n \geq 1: X_{n}=y\right\}, \quad y \in S,
$$

i.e. the first positive time the chain visits y.

A convenient notion:

$$
P_{x}(\cdot) \stackrel{\text { def }}{=} P\left(\cdot \mid X_{0}=x\right)
$$

i.e. the probabilities of various events defined in terms of the Markov chain starting at $x \in S$.

For instance,

$$
P_{x}(A)=P\left(A \mid X_{0}=x\right)
$$

is the prob of A given that the chain starts at x.

Prop (i) $P_{x}\left(T_{y}=1\right)=P(x, y)$.

Proof:
$\because\left\{T_{y}=1\right\}=\left\{X_{1}=y\right\}$
\therefore

$$
\begin{aligned}
& P_{x}\left(T_{y}=1\right) \\
& =P\left(X_{1}=y \mid X_{0}=x\right) \\
& =P(x, y) . \quad \square
\end{aligned}
$$

Prop (ii)

$$
P_{x}\left(T_{y}=n+1\right)=\sum_{z \neq y} P(x, z) P_{z}\left(T_{y}=n\right), n \geq 1
$$

Proof: Note

$$
\left\{T_{y}=n+1\right\}=\bigcup_{z: z \neq y}\left\{X_{1}=z, X_{2} \neq y, \cdots, X_{n} \neq y, X_{n+1}=y\right\} .
$$

\therefore

$$
\begin{aligned}
& P_{x}\left(T_{y}=n+1\right) \\
& =\sum_{z \neq y} P_{x}\left(X_{1}=z, X_{2} \neq y, \cdots, X_{n} \neq y, X_{n+1}=y\right) \\
& =\sum_{z \neq y} P_{x}\left(X_{1}=z\right) P_{x}\left(X_{2} \neq y, \cdots, X_{n} \neq y, X_{n+1}=y \mid X_{1}=z\right) \\
& =\sum_{z \neq y} \underbrace{P\left(X_{1}=z \mid X_{0}=x\right)}_{=P(x, z)} \underbrace{P\left(X_{2} \neq y, \cdots, X_{n} \neq y, X_{n+1}=y \mid X_{0}=x, X_{1}=z\right)}_{=P_{z}\left(T_{y}=n\right) \text { why? }}
\end{aligned}
$$

Recall an Exercise:

$$
\begin{gathered}
P\left(X_{n+1} \in B_{1}, \cdots, X_{n+m} \in B_{m} \mid X_{0} \in A_{0}, \cdots, X_{n-1} \in A_{n-1}, X_{n}=x\right) \\
=P_{x}\left(X_{1} \in B_{1}, X_{2} \in B_{2}, \cdots, X_{m} \in B_{m}\right)
\end{gathered}
$$

See the tutorial for the proof.
$\mathbf{R k}$: It is essentially due to the Markovian property (i.e., given "the present" state, "the past" has no influence on "the future"). So, the prob on the LHS is understood to be the prob in the situation when the chain initially starts at x.

$$
\begin{aligned}
\therefore & P\left(X_{2} \neq y, \cdots, X_{n} \neq y, X_{n+1}=y \mid X_{0}=x, X_{1}=z\right) \\
& =P_{z}\left(X_{1} \neq y, X_{2} \neq y, \cdots, X_{n-1} \neq y, X_{n}=y\right) \\
& =P_{z}\left(T_{y}=n\right) .
\end{aligned}
$$

Prop (iii)

$$
P^{n}(x, y)=\sum_{m=1}^{n} P_{x}\left(T_{y}=m\right) P^{n-m}(y, y)
$$

Proof: Note: $P^{n}(x, y)=P\left(X_{n}=y \mid X_{0}=x\right)=P_{x}\left(X_{n}=y\right)$

$$
\begin{aligned}
& \left\{X_{n}=y\right\}=\bigcup_{m=1}^{n}\left\{T_{y}=m, X_{n}=y\right\} \text { (disjoint union) } \\
& \therefore P^{n}(x, y)=P_{x}\left(X_{n}=y\right)
\end{aligned}
$$

$$
=\sum_{m=1}^{n} P_{x}\left(T_{y}=m, X_{n}=y\right)
$$

$$
=\sum_{m=1}^{n} P_{x}\left(T_{y}=m\right) P_{x}\left(X_{n}=y \mid T_{y}=m\right)
$$

$$
=\sum_{m=1}^{n} P_{x}\left(T_{y}=m\right) P\left(X_{n}=y \mid X_{0}=x, X_{1} \neq y, \cdots, X_{m-1} \neq y, X_{m}=y\right)
$$

$$
=\sum_{m=1}^{n} P_{x}\left(T_{y}=m\right) P^{n-m}(y, y)
$$

Sum:

Proposition:

(i) $P_{x}\left(T_{y}=1\right)=P(x, y)$.
(ii) $P_{x}\left(T_{y}=n+1\right)=\sum_{z \neq y} P(x, z) P_{z}\left(T_{y}=n\right), \quad n \geq 1$.
(iii) $P^{n}(x, y)=\sum_{m=1}^{n} P_{x}\left(T_{y}=m\right) P^{n-m}(y, y)$.

Corollary: If $a \in S$ is absorbing, i.e. $P(a, a)=$ 1 , then for any $n \geq 1, P^{n}(x, a)=P_{x}\left(T_{a} \leq n\right)$.

Proof:

$$
\begin{aligned}
P^{n}(x, a) & =\sum_{m=1}^{n} P_{x}\left(T_{a}=m\right) \underbrace{P^{n-m}(a, a)}_{=1(\text { to be shown later })} \\
& =\sum_{m=1}^{n} P_{x}\left(T_{a}=m\right) \\
& =P_{x}\left(\cup_{m=1}^{n}\left\{T_{a}=m\right\}\right) \\
& =P_{x}\left(T_{a} \leq n\right) . \quad \square
\end{aligned}
$$

It remains to show: For any $n \geq 0, P^{n}(a, a)=1$. Indeed:

- $n=0,1$ is obvious.
- $n \geq 2$:

$$
\begin{aligned}
P^{n}(a, a) & =\sum_{x_{1}, \cdots, x_{n-1}} P\left(a, x_{1}\right) P\left(x_{1}, x_{2}\right) \cdots P\left(x_{n-1}, a\right) \\
& =\sum_{x_{2}, \cdots, x_{n-1}} P\left(a, x_{2}\right) \cdots P\left(x_{n-1}, a\right) \\
& =\cdots \\
& =\sum_{x_{n-1}} P\left(a, x_{n-1}\right) P\left(x_{n-1}, a\right) \\
& =P(a, a) \\
& =1
\end{aligned}
$$

Recall: $\rho_{x y}=P_{x}\left(T_{y}<\infty\right)$ is the prob that the chain starting at x will visit y at some positive time.

In particular,

$$
\rho_{y y}=P_{y}\left(T_{y}<\infty\right)
$$

is the prob that the chain starting at y will ever return to y.

Def.:

- A state y is called recurrent if $\rho_{y y}=1$, and transient if $\rho_{y y}<1$.
- A chain is called a recurrent (transient) chain if all states are recurrent (transient).
$\mathbf{R k}$: An absorbing state is recurrent.

Example:

$$
\left.P=\begin{array}{c}
\\
1 \\
2 \\
3 \\
4
\end{array} \begin{array}{cccc}
1 & 2 & 3 & 4 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right] .
$$

Q: Find the matrix $\left[\rho_{x y}\right]$ from $P=[P(x, y)]$.

Observe:
(i) $0=\rho_{13}=\rho_{14}, \quad 0=\rho_{23}=\rho_{24}$.
(ii) $1=\rho_{11}=\rho_{22}, \quad \therefore 1,2$ are recurrent.
(iii) $\rho_{33}<1, \rho_{44}<1, \quad \therefore 3,4$ are transient.

$$
P=\begin{gathered}
1 \\
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{cccc}
1 & * & 0 & 0 \\
* & 1 & 0 & 0 \\
* & * & * & * \\
* & * & * & *
\end{array}\right] .
$$

Recalling $\rho_{x y}=P_{x}\left(T_{y}<\infty\right)$, we have

$$
\rho_{x y}=P(x, y)+\sum_{z: z \neq y} P(x, z) \rho_{z y}
$$

(Exercise)
Argument: Start at x.

- If $T_{y}=1$, i.e. visit y at $n=1$, prob is $P(x, y)$.
- If it does not visit y at $n=1$, then it will first visit $z(z \neq y)$ and then start from such z to visit y at some positive time.

$$
\begin{gathered}
\left\{\begin{array}{c}
\rho_{33}=0 \cdot \rho_{13} \\
\rho_{43}=0 \cdot \rho_{13}^{0}+\overrightarrow{2}^{0} \cdot \rho_{23} 0 \cdot \vec{\rho}_{23}^{0}+\frac{1}{4}+\frac{1}{4} \cdot \rho_{43}+\frac{1}{2} \cdot \rho_{43}
\end{array}\right. \\
\therefore \rho_{43}=1, \quad \rho_{33}=\frac{1}{2}
\end{gathered}
$$

Similarly,

$$
\begin{aligned}
& \rho_{34}=l \cdot \rho_{14} 0+\frac{1}{2} \cdot \rho_{24}^{0}+\frac{1}{4} \cdot \rho_{34}+\frac{1}{4}, \quad \therefore \rho_{34}=\frac{1}{3}, \\
& \rho_{44}=0 \cdot{\rho_{14}}^{0}+\rho \cdot \overrightarrow{\rho 24}^{0}+\frac{1}{2} \cdot \rho_{34}+\frac{1}{2} \quad \therefore \rho_{44}=\frac{2}{3} .
\end{aligned}
$$

$$
\left[\rho_{i j}\right]=\begin{gathered}
1 \\
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & \frac{1}{2} & \frac{1}{3} \\
1 & 1 & 1 & \frac{2}{3}
\end{array}\right] .
$$

Note: There is a matrix argument for finding [$\rho_{x y}$].
See Lawler p.23-27.

Question 3. Times of visit to a state.
$\left\{X_{n}\right\}_{n=0}^{\infty}$: a time-homogeneous Markov chain $S=\{0, \cdots, N\}(N$: finite or $\infty)$: state space $X_{0}=x \in S$
$N(y) \stackrel{\text { def }}{=}$ no of times that $X_{n}(n \geq 1)$ visits y.

Note:

- $N(y)=\sum_{n=1}^{\infty} 1_{y}\left(X_{n}\right)$, where $1_{y}\left(X_{n}\right)= \begin{cases}1, & X_{n}=y \\ 0, & X_{n} \neq y\end{cases}$
- $N(y) \in\{0,1,2,3, \cdots\} \cup\{\infty\}$.

$$
\begin{aligned}
\{N(y)=0\} & =" y \text { is not visited" } \\
\{N(y)=k\} & =" y \text { is visited exactly } k \text { times" } \\
\{N(y)=\infty\} & =" y \text { is visited infinitely times" }
\end{aligned}
$$

Some Facts:

- $\underbrace{\{N(y) \geq 1\}}_{\text {" } y \text { is visited at least one time" }}=\underbrace{\left\{T_{y}<\infty\right\}}_{\text {" } y \text { is visited at a positive finite time" }}$

$$
\therefore P_{x}(N(y) \geq 1)=P_{x}\left(T_{y}<\infty\right)=\rho_{x y} .
$$

- $\{N(y)=0\}=\{N(y) \geq 1\}^{c}$.

$$
\therefore P_{x}(N(y)=0)=1-\rho_{x y} \text {. }
$$

Claim: For $m \geq 1, P_{x}(N(y) \geq m)=\rho_{x y} \rho_{y y}^{m-1}$.

Case $m=2$. To show: $P_{x}(N(y) \geq 2)=\rho_{x y} \rho_{y y}$.
Note:
$\{N(y) \geq 2\}=\cup_{k \geq 1} \cup_{n \geq 1}\{$ chain starting at x first visits y at $k \geq 1$ and next visit y again after n units of time $\}$.
For each $k \geq 1$ and $n \geq 1$, prob $=P_{x}\left(T_{y}=k\right) P_{y}\left(T_{y}=n\right)$.
Therefore,

$$
\begin{aligned}
P_{x}(N(y) \geq 2) & =\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} P_{x}\left(T_{y}=k\right) P_{y}\left(T_{y}=n\right) \\
& =\sum_{n=1}^{\infty} P_{x}\left(T_{y}<\infty\right) P_{y}\left(T_{y}=n\right) \\
& =\rho_{x y} P_{y}\left(T_{y}<\infty\right) \\
& =\rho_{x y} \rho_{y y} .
\end{aligned}
$$

Use the same idea to show $P_{x}(N(y) \geq m)=\rho_{x y} \rho_{y y}^{m-1}$ for $m \geq 2$.

A further fact:

$$
\{N(y)=m\}=\{N(y) \geq m\} \backslash\{N(y) \geq m+1\}
$$

$N(y) \geq m$

$$
\begin{aligned}
\therefore P_{x}(N(y)=m) & =\rho_{x y} \rho_{y y}^{m-1}-\rho_{x y} \rho_{y y}^{(m+1)-1} \\
& =\rho_{x y} \rho_{y y}^{m-1}\left(1-\rho_{y y}\right) .
\end{aligned}
$$

Sum:

Proposition:

(i) $P_{x}(N(y) \geq 1)=P_{x}\left(T_{y}<\infty\right)=\rho_{x y}$,

$$
P_{x}(N(y)=0)=1-\rho_{x y} .
$$

(ii) For $m \geq 1$,

$$
\begin{aligned}
& P_{x}(N(y) \geq m)=\rho_{x y} \rho_{y y}^{m-1} \\
& P_{x}(N(y)=m)=\rho_{x y} \rho_{y y}^{m-1}\left(1-\rho_{y y}\right)
\end{aligned}
$$

Proposition: $E_{x}(N(y))=\sum_{n=1}^{\infty} P^{n}(x, y)$.
I.h.s. $=$ the expected no of visit to y from x.

Warning: The value can be ∞ !

Proof:

$$
\begin{aligned}
E_{x}(N(y)) & =E_{x}\left(\sum_{n=1}^{\infty} 1_{y}\left(X_{n}\right)\right) \\
& =\sum_{n=1}^{\infty} E_{x}\left(1_{y}\left(X_{n}\right)\right) \\
& =\sum_{n=1}^{\infty} P_{x}\left(X_{n}=y\right) \\
& =\sum_{n=1}^{\infty} P\left(X_{n}=y \mid X_{0}=x\right)=\sum_{n=1}^{\infty} P^{n}(x, y) .
\end{aligned}
$$

Theorem (i): y is transient iff $P_{y}(N(y)=\infty)=0$.

Proof: Note

$$
\begin{align*}
P_{x}(N(y)=\infty) & =\lim _{m \rightarrow \infty} P_{x}(N(y) \geqslant m) \\
& =\lim _{m \rightarrow \infty} \rho_{x y} \rho_{y y}^{m-1} \\
& = \begin{cases}0 & \text { if } \rho_{y y}<1 \\
\rho_{x y} & \text { if } \rho_{y y}=1\end{cases} \tag{*}
\end{align*}
$$

$\therefore y$ transient
$\Longleftrightarrow \rho_{y y}<1$
$\stackrel{(*)}{\Longleftrightarrow} P_{y}(N(y)=\infty)=0$.

Theorem (ii): If y is transient then

$$
E_{x}(N(y))=\frac{\rho_{x y}}{1-\rho_{y y}}<\infty, \quad x \in S
$$

Proof: For a transient state y,

$$
\begin{aligned}
E_{x}(N(y)) & =\sum_{m=0}^{\infty} m P_{x}(N(y)=m) \\
& =\sum_{m=1}^{\infty} m \rho_{x y} \rho_{y y}^{m-1}\left(1-\rho_{y y}\right) \quad\left(\rho_{y y}<1\right) \\
& =\rho_{x y}\left(1-\rho_{y y}\right) \cdot \frac{1}{\left(1-\rho_{y y}\right)^{2}} \\
& =\frac{\rho_{x y}}{1-\rho_{y y}}<\infty .
\end{aligned}
$$

Theorem (iii):

y is recurrent,
iff $P_{y}(N(y)=\infty)=1$,
iff $E_{y}(N(y))=\infty$.
Proof: y recurrent
$\Longleftrightarrow \rho_{y y}=1 \stackrel{(*)}{\Longleftrightarrow} P_{y}(N(y)=\infty)=1$

$$
\stackrel{(* *)}{\Longleftrightarrow} E_{y}(N(y))=\infty .
$$

To show (**):
$" \Longrightarrow ": \because P_{y}(N(y)=\infty)=1$
$\therefore E_{y}(N(y))=\infty$.
" \Longleftarrow ": If $E_{y}(N(y))=\infty$ then y must be recurrent by Theorem (ii).

Remark: If y is recurrent, then for $x \in S$,

$$
E_{x}(N(y))= \begin{cases}0 & \text { if } \rho_{x y}=0 \\ \infty & \text { if } \rho_{x y}>0\end{cases}
$$

WHY? It is heuristically obvious.
Left for an exercise.

Corollary: If S is finite, then the chain must have at least one recurrent state.

Proof: Otherwise, all states are transient. Then, for any $x \& y$,

$$
\sum_{n=1}^{\infty} P^{n}(x, y)=E_{x}(N(y))=\frac{\rho_{x y}}{1-\rho_{y y}}<\infty
$$

$\therefore \lim _{n \rightarrow \infty} P^{n}(x, y)=0$. Then

$$
\begin{aligned}
0 & =\sum_{y \in S} \lim _{n \rightarrow \infty} P^{n}(x, y) \\
& =\lim _{n \rightarrow \infty} \sum_{y \in S} P^{n}(x, y) \quad(S: \text { finite }) \\
& =\lim _{n \rightarrow \infty} P_{x}\left(X_{n} \in S\right)=\lim _{n \rightarrow \infty} 1=1 .
\end{aligned}
$$

Question 4. Decomposition of state space.

Def: x leads to y (denoted by $x \rightarrow y$) if

$$
\rho_{x y}>0 .
$$

Fact 1: $x \rightarrow y$ (i.e. $\rho_{x y}>0$) iff

$$
P^{n}(x, y)>0 \quad \text { for some } n \geqslant 1
$$

Proof: Note:

- $\rho_{x y}=P_{x}\left(T_{y}<\infty\right)=P_{x}\left(\left\{\exists m \geq 1\right.\right.$ s.t. $\left.\left.X_{m}=y\right\}\right)$.
- $P^{n}(x, y)=P\left(X_{n}=y \mid X_{0}=x\right)=P_{x}\left(X_{n}=y\right)$.

Fact 2: $\left.\begin{array}{l}x \rightarrow y \\ y \rightarrow z\end{array}\right\} \Longrightarrow x \rightarrow z$.
Proof: Note

Fact 3:
x recurrent $\left.\left(\rho_{x x}=1\right)\right\} \quad\left\{\begin{array}{l}\text { (i) } y \rightarrow x \\ \text { (ii) } y\end{array}\right.$
$x \rightarrow y \quad\}$
(ii) y recurrent
(iii) $\rho_{y x}=\rho_{x y}=1$

Proof (Heuristic):

Def.:

(i) $C \subseteq S$ is closed if

$$
\rho_{x y}=0, \quad \forall x \in C, \quad \forall y \notin C
$$

i.e. no state in C leads to any state out C.
(ii) A closed set C is irreducible if

$$
x \rightarrow y\left(\text { i.e. } \rho_{x y}>0\right), \quad \forall x \in C, \forall y \in C
$$

namely, any two in C can communicate with each other.
(iii) $\left\{X_{n}\right\}_{n=0}^{\infty}$ is an irreducible MC if its state space S is irreducible.

Remark (a): One can claim that

$$
\begin{align*}
& C \text { is closed, i.e. } \rho_{x y}=0, \forall x \in C, \forall y \notin C \tag{1}\\
& \Longleftrightarrow P^{n}(x, y)=0, \forall x \in C, \forall y \notin C, \forall n \geqslant 1 \tag{2}\\
& \Longleftrightarrow P(x, y)=0, \forall n \in C, \forall y \notin C \tag{3}
\end{align*}
$$

- Direct to see: $(1) \Longleftrightarrow(2) \Longrightarrow$ (3).
- To show $(3) \Longrightarrow(2)$: For $x \in C$ \& $y \notin C$,

$$
\begin{aligned}
P^{2}(x, y) & =\sum_{x_{1} \in S} P\left(x, x_{1}\right) P\left(x_{1}, y\right) \\
& =\sum_{x_{1} \in C} P\left(x, x_{1}\right) P\left(x_{1}, y\right)+\sum_{x_{1} \notin C} P\left(x, x_{1}\right)-\beta\left(x_{1}, y\right) \\
& =0 .
\end{aligned}
$$

Induction $\Longrightarrow P^{n}(x, y)=0, \forall n \geqslant 1$.

Remark (b): If

$$
C \text { is closed, } x \in C, P(x, y)>0
$$

then

$$
y \in C
$$

Remark (c): If $C \subset S$ is closed, then

$$
\left\{X_{n}\right\}_{n=0}^{\infty}
$$

can also be regarded as a Markov Chain with the state space C.

Theorem: If C is an irreducible closed set, then either

$$
\text { all states in } C \text { are recurrent }
$$

or

all states in C are transient.

In particular, if C is a finite irreducible closed set, then all states in C must be recurrent.

Proof: Two cases in general:
(i) C does NOT contain any recurrent state. In the case, all states in C are transient.
(ii) C contains at least one recurrent state. As C is irreducible, all states in C are recurrent.
The particular case follows from the fact that any finite closed set must contain at least one recurrent state.

Set

$$
\begin{aligned}
& S_{R}=\{\text { recurrent states }\}, \\
& S_{T}=\{\text { transient states }\}
\end{aligned}
$$

Then,

$$
S=S_{R} \cup S_{T}
$$

$\therefore S_{R}$ is closed!
A further question: Is S_{R} irreducible? namely, can any two recurrent states communicate to each other?

Observe: Assume $S_{R} \neq \phi$, for instance, $\exists x_{0} \in S_{R}$.
Define

$$
C_{x_{0}}=\left\{x \in S_{R}: x_{0} \rightarrow x\right\} .
$$

Then, $C_{x_{0}}$ must be closed \& irreducible.

Proof:

(1) " $C_{x_{0}}$ closed" \Longleftrightarrow "If $x \in C_{x_{0}} \& x \rightarrow y \in S$ then $y \in C_{x_{0}}$ " (Indeed, $y \in S_{R}, \therefore x_{0} \rightarrow x \rightarrow y \in S_{R}$)
(2) " $C_{x_{0}}$ irreducible" \Longleftrightarrow " If $x, y \in C_{x_{0}}$ then $x \rightarrow y$ ". Indeed, $\left.\begin{array}{l}x_{0} \rightarrow x \in S_{R} \\ x_{0} \rightarrow y \in S_{R}\end{array}\right\} \Longrightarrow x \rightarrow x_{0} \rightarrow y$.

Theorem: Assume $S_{R} \neq \phi$. Then

$$
S_{R}=\bigcup_{i=1}^{k} C_{i} \quad(k: \text { finite or infinite })
$$

where $C_{i}, 1 \leqslant i \leqslant k$ are disjoint irreducible closed sets of recurrent states.

Proof: It suffices to show: If $C_{1} \& C_{2}$ are two irreducible \& closed sets, then either $C_{1}=C_{2}$ or $C_{1} \cap C_{2}=\phi$.

Assuming $C_{1} \cap C_{2} \neq \phi$, we need to show $C_{1}=C_{2}$. In fact, let $y \in C_{1}$ be arbitrary, we want: $y \in C_{2}$
$\left(\therefore C_{1} \subseteq C_{2} \subseteq C_{1}\right)$.Indeed, $\exists x \in C_{1} \cap C_{2}$, then $C_{2} \ni x \rightarrow y$.
$\therefore y \in C_{2}$.

Corollary: If C is an irreducible \& closed set, then

$$
\text { either } C \subseteq S_{R} \text { or } C \subseteq S_{T}
$$

In particular, if C is a finite, irreducible \& closed set, then

$$
C \subseteq S_{R}
$$

In terms of the (disjoint) decomposition

$$
S=S_{R} \cup S_{T}=\left(\cup_{i=1}^{k} C_{i}\right) \cup S_{T}
$$

we may rewrite P as the canonical form:

$P=$| | C_{1} | C_{2} | \cdots | C_{k} |
| :---: | :---: | :---: | :---: | :---: |
| C_{1} | $*$ | S_{T} | | |
| C_{2} | 0 | $*$ | \cdots | 0 |
| \vdots | \vdots | \ddots | $*$ | 0 |
| C_{k} | 0 | 0 | 0 | $*$ |
| S_{T} | $*$ | $*$ | $*$ | $*$ |,

where * denotes the sub-matrix with possible $\neq 0$ entries.

Example:

$$
P=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 & 0 & 0 \\
0 & \frac{1}{5} & \frac{2}{5} & \frac{1}{5} & 0 & \frac{1}{5} \\
0 & 0 & 0 & \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & \frac{1}{4} & 0 & \frac{3}{4}
\end{array}\right]
$$

Q.: Determine $S=S_{R} \cup S_{T}=\left(\cup_{i=1}^{k} C_{i}\right) \cup S_{T}$.

- $1 \rightarrow 1 \therefore C_{1}=\{1\}$.
- $4 \rightarrow 5 \rightarrow 6 \rightarrow 4$ (irreducible), and 4, 5, 6 do not lead to any other state (closed). $\therefore C_{2}=\{4,5,6\}$.
- $2 \rightarrow 1,3 \rightarrow 4, \therefore S_{T}=\{2,3\}$.

We then reformulate P in the canonical form of

$$
\begin{aligned}
& a=1 \quad b=4 \quad c=5 \quad d=6 \quad e=2 \quad f=3 \\
& P=\begin{aligned}
a & =1 \\
b & =4 \\
c & =5 \\
d & =6 \\
e & =2 \\
f & =3
\end{aligned}\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{6} & \frac{1}{3} & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{4} & 0 & \frac{3}{4} & 0 & 0 \\
\frac{1}{4} & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{4} \\
0 & \frac{1}{5} & 0 & \frac{1}{5} & \frac{1}{5} & \frac{2}{5}
\end{array}\right] .
\end{aligned}
$$

Final Issue: Assume that C is an irreducible \& closed set of recurrent states. Then,

$$
T_{c} \stackrel{\text { def }}{=} \min \left\{n \geqslant 1: X_{n} \in C\right\}
$$

denotes the hitting time of C.

We can also consider

$$
\rho_{C}(x) \stackrel{\text { def }}{=} P_{x}\left(T_{C}<\infty\right)
$$

is the prob that the chain starting at x hits C in finite time (or is absorbed by the set C).

NOTE: Once the chain hits C, it remains in C forever. (Why?)
$\therefore \rho_{C}(\cdot)$ is called the absorption prob.
It is clear to see:

$$
\rho_{C}(x)= \begin{cases}1 & \text { if } x \in C \\ 0 & \text { if } x \text { is recurrent but } \notin C\end{cases}
$$

Q.: How to compute $\rho_{C}(x), x \in S_{T}$?

Indeed, assume S_{T} is finite, then for $x \in S_{T}$,

$$
\begin{equation*}
\rho_{C}(x)=\sum_{y \in C} P(x, y)+\sum_{y \in S_{T}} P(x, y) \rho_{C}(y) \tag{*}
\end{equation*}
$$

Assume $d_{T} \stackrel{\text { def }}{=} \#$ of S_{T} is finite $\#$ of unknowns $=d_{T}: \rho_{C}(x), x \in S_{T}$ $\#$ of equations $=d_{T}$
\therefore it is possible to find out $\rho_{C}(x), x \in S_{T}$ by solving the linear system of d_{T} equations.

Theorem. Let S_{T} be finite. Then $(*)$ admits a unique solution.

Proof. Omitted.

Example: Find $\underbrace{\rho_{C_{2}}(e)}_{\stackrel{\text { def }}{=} x}, \underbrace{\rho_{C_{2}}(f)}_{\stackrel{\text { def }}{=} y}$?

$$
\begin{aligned}
& \text { (1/4) } \\
& \left\{\begin{array}{l}
x=\rho c_{2}(e)=\underbrace{[0+0+0]}_{\sum_{j \in C_{2}=\{b, c, d\}} P(e, j)}+\underbrace{\left[0+\frac{1}{2} x+\frac{1}{4} y\right]}_{\sum_{j \in S_{T}=\{e, f\}} P(e, j) \rho_{c_{2}}(j)} \\
y=\rho_{C_{2}}(f)=\underbrace{\left[\frac{1}{5}+0+\frac{1}{5}\right]}_{\sum_{j \in c_{2}=\{t, c, d\}} P(f, j)}+\underbrace{\left[\frac{1}{5} x+\frac{2}{5} y\right]}_{\sum_{j \in s_{T}=\{e, f\}} P(f, j) \rho_{c_{2}}(j)}
\end{array} \therefore x=\frac{2}{5}, y=\frac{4}{5} .\right.
\end{aligned}
$$

Similarly, let $\rho_{C_{1}}(e)=x$ and $\rho_{C_{1}}(f)=y$,

then

$$
\left\{\begin{array}{l}
x=\left[\frac{1}{4}\right]+\left[\frac{1}{2} x+\frac{1}{4} y\right] \\
v=[0]+\left[\frac{1}{-x} x+\frac{2}{-v]}\right.
\end{array} \Longrightarrow x=\frac{3}{5}, \quad y=\frac{1}{5}\right.
$$

$\operatorname{Remark}(\mathbf{i}): \sum_{i} \rho c_{i}(x) \equiv 1, x \in S_{T}$ (finite).
Indeed,
$\sum_{i} \rho_{C_{i}}(x)=\sum_{i} P_{x}\left(T_{C_{i}}<\infty\right)=P_{x}\left(T_{S_{R}}<\infty\right)=1$.
Heuristically, it is obvious:

- We totally have finite transient states.
- Each transient state is visited only finite times.
- Surely the chain from x hits a recurrent state in finite time, so the prob $=1$.

Remark (ii): $\rho_{x y}=\rho_{C}(x), x \in S_{T}, y \in C$.
Apply it to the previous example:

§1.3 More examples

Examples 1: Birth \& Death Chain.

- Setting:

$$
\left\{X_{n}\right\}_{n=0}^{\infty}, S=\{0,1, \cdots, d\}(d: \text { finite or } \infty)
$$

$$
P(x, y)=\left\{\begin{array}{ll}
q_{x} & \text { if } y=x-1 \\
r_{x} & \text { if } y=x \\
p_{x} & \text { if } y=x+1 \\
0 & \text { otherwise }
\end{array} \quad \text { where } q_{x}+\gamma_{x}+\rho_{x}=1\right.
$$

$q_{0}=0 ; p_{d}=0$, if d is finite.
Note: the transition probs are functions of states!

$$
P=\begin{gathered}
0 \\
1 \\
\vdots \\
d-1 \\
d
\end{gathered}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & \cdots & d-1 \\
r_{0} & p_{0} & & & & \\
q_{1} & r_{1} & p_{1} & & & \\
& q_{2} & r_{2} & p_{2} & & \\
& & \ddots & \ddots & \ddots & \\
& & & q_{d-1} & r_{d-1} & p_{d-1} \\
& & & & q_{d} & r_{d}
\end{array}\right]
$$

A general question: Given $a, b \in S$ with $a<b$, compute

$\left\{T_{a}<T_{b}\right\}=$ Before the chain hits b, it hits a, (i.e., the chain hits a earlier than b)
$\left\{T_{a}>T_{b}\right\}=$ Before the chain hits a, it hits b, (i.e., the chain hits b earlier than a)

Claim:

(i) $u(a)=1, u(b)=0$.
(ii) $u(x)=q_{x} u(x-1)+r_{x} u(x)+p_{x} u(x+1)$ for $a<x<b$.
(iii) $u(x)=\frac{\sum_{y=x}^{b-1} \gamma_{y}}{\sum_{y=a}^{b-1} \gamma_{y}}$ for $a<x<b$.
(iv) $v(x)=1-u(x)=\frac{\sum_{y=y}^{x-1} \gamma_{y}}{\sum_{y=1}^{-1} v_{y}}$ for $a<x<b$,
where γ_{x} are defined by

$$
\gamma_{x} \stackrel{\text { def }}{=} \begin{cases}1 & \text { if } x=0 \\ \frac{q_{1} \cdots q_{x}}{p_{1} \cdots p_{x}} & \text { if } 1 \leq x \leq d-1 .\end{cases}
$$

Proof:

(i) is obvious.
(ii) follows by

$$
\begin{aligned}
P_{x}(A)= & P_{x}\left(A, X_{1}=x-1\right)+P_{x}\left(A, X_{1}=x\right) \\
& +P_{x}\left(A, X_{1}=x+1\right) \\
= & P_{x}\left(X_{1}=x-1\right) P_{x}\left(A \mid X_{1}=x-1\right) \\
& +P_{x}\left(X_{1}=x\right) P_{x}\left(A \mid X_{1}=x\right) \\
& +P_{x}\left(X_{1}=x+1\right) P_{x}\left(A \mid X_{1}=x+1\right) \\
= & P\left(X_{1}=x-1 \mid X_{0}=x\right) P\left(A \mid X_{0}=x, X_{1}=x-1\right) \\
& +P\left(X_{1}=x \mid X_{0}=x\right) P\left(A \mid X_{0}=x, X_{1}=x\right) \\
& +P\left(X_{1}=x+1 \mid X_{0}=x\right) P\left(A \mid X_{0}=x, X_{1}=x+1\right) \\
= & q_{x} P_{x-1}(A)+r_{x} P_{x}(A)+p_{x} P_{x+1}(A) .
\end{aligned}
$$

Proof of (iii):

$$
\begin{aligned}
& u(x)=q_{x} u(x-1)+\left(1-p_{x}-q_{x}\right) u(x)+p_{x} u(x+1) \\
& \begin{aligned}
\left(p_{x}+q_{x}\right) u(x)=q_{x} u(x-1)+p_{x} u(x+1)
\end{aligned} \\
& \begin{aligned}
u(x+1)-u(x) & =\frac{q_{x}}{p_{x}}[u(x)-u(x-1)] \quad(a<x<b) \\
& =\frac{q_{x} \cdot q_{x-1}}{p_{x} \cdot p_{x-1}}[u(x-1)-u(x-2)] \\
& =\cdots
\end{aligned}
\end{aligned}
$$

$$
=\left(\frac{q_{x}}{p_{x}}\right)\left(\frac{q_{x-1}}{p_{x-1}}\right) \cdots\left(\frac{q_{a+1}}{p_{a+1}}\right)[u(a+1)-u(a)]
$$

$$
=\frac{\gamma_{x}}{\gamma_{a}}[u(a+1)-u(a)] .
$$

Note: $\sum_{x=1}^{b-1}(\cdot) \Rightarrow \underbrace{u(b)-u(a)}_{=-1}=\frac{\sum_{x=a}^{b-1} \gamma_{x}}{\gamma_{a}}[u(a+1)-u(a)]$

$$
\therefore u(x+1)-u(x)=-\frac{\gamma_{x}}{\sum_{x=a}^{b-1} \gamma_{x}} \quad(a \leqslant x<b)
$$

Further, change x to $y, \sum_{y=x}^{b-1} \Rightarrow$

Reminder:

- $u(x) \stackrel{\text { def }}{=} P_{x}\left(T_{a}<T_{b}\right), \quad a<x<b$.
- $\gamma_{x} \stackrel{\text { def }}{=} \begin{cases}1 & \text { if } x=0 \\ \frac{q_{1} \cdots q_{x}}{p_{1} \cdots p_{x}} & \text { if } 1 \leq x \leq d-1\end{cases}$

Sum:

$$
a<x<b
$$

$$
\begin{aligned}
P_{x}(\underbrace{T_{a}<T_{b}}_{\text {"Death faster" }}) & =\sum_{y=x}^{b-1} \gamma_{y} / \sum_{y=a}^{b-1} \gamma_{y}, \\
P_{x}(\underbrace{T_{a}>T_{b}}_{\text {"Birth faster" }}) & =\sum_{y=a}^{x-1} \gamma_{y} / \sum_{y=a}^{b-1} \gamma_{y} .
\end{aligned}
$$

e.g.: Set:

- A gambler bets $\$ 1$ each time.
- The prob of winning or losing each bet is $9 / 19$ and $10 / 19$, resp.
- The gambler will quit as soon as his net winning is $\$ 25$ or his net loss is $\$ 10$.
Q.:
(i) Find the prob he quits and wins.
(ii) Find his expected loss.

Sol.: Let
$X_{n} \stackrel{\text { def }}{=}$ the capital of the gambler at time

$$
n=0,1,2, \cdots
$$

For simplicity, we choose

$$
X_{0}=10, \quad S=\{0,1, \cdots, 35\}
$$

$\left\{X_{n}\right\}_{n=0}^{\infty}$ forms a birth \& death chain on S with

(i) Find the prob he quits and wins: To find

$$
\begin{aligned}
P_{10}(\underbrace{T_{35}<T_{0}}_{\text {"Birth faster" }}) & =\frac{\sum_{y=0}^{9} \gamma_{y}}{\sum_{y=0}^{34} \gamma_{y}}=\frac{\sum_{y=0}^{9}\left(\frac{10}{9}\right)^{y}}{\sum_{y=0}^{34}\left(\frac{10}{9}\right)^{y}}=\frac{\left(\frac{10}{9}\right)^{10}-1}{\left(\frac{10}{9}\right)^{35}-1} \\
& =0.047 .
\end{aligned}
$$

(ii) Find his expected loss:

gain $(+25)$	loss (-10)
0.047	$1-0.047$

The expected loss is

$$
(1-0.047)(-10)+(0.047)(25)=-8.36
$$

- We are further interested in the below situation:

Assume that $S=\{0,1,2, \cdots\}$ is infinite, and the birth \& death chain is irreducible, namely,

$$
p_{x}>0, \forall x \geqslant 0, \quad \text { and } \quad q_{x}>0, \forall x \geqslant 1
$$

Q.: When such chain is recurrent or transient?
(NOT obvious for an irreducible chain with infinite states!)

Proposition: The chain is recurrent iff

$$
\sum_{k=0}^{\infty} \gamma_{k}=\infty
$$

Pf.: Since the chain is irreducible, we only need to consider one state, namely, 0. Observe that

$$
\begin{equation*}
\rho_{00}=P_{0}\left(T_{0}<\infty\right)=r_{0}+p_{0} P_{1}\left(T_{0}<\infty\right) \tag{*}
\end{equation*}
$$

where

$$
\begin{aligned}
\rho_{10}=P_{1}\left(T_{0}<\infty\right) & =\lim _{n \rightarrow \infty} P_{1}\left(T_{0}<T_{n}\right) \\
& =\lim _{n \rightarrow \infty}\left[1-\frac{1}{\sum_{k=0}^{n-1} \gamma_{k}}\right] .(* *)
\end{aligned}
$$

Therefore,
0 is recurrent, i.e. $\rho_{00}=1$

$$
\begin{aligned}
& (*) \& r_{0}+p_{0}=1 \\
& \Longleftrightarrow \\
& \rho_{10}=P_{1}\left(T_{0}<\infty\right)=1 \\
& \stackrel{(* *)}{\Longleftrightarrow} \sum_{k=0}^{\infty} \gamma_{k}=\infty .
\end{aligned}
$$

Remark: For instance, let

$$
p_{x} \equiv p>0, \quad q_{x} \equiv q>0,0<\rho+q \leqslant 1
$$

Then,

$$
\sum_{k=0}^{\infty} \gamma_{k}=\sum_{k=0}^{\infty}\left(\frac{q}{p}\right)^{k}
$$

- If $p>q$, then $\sum_{k=0}^{\infty} \gamma_{k}$ is finite. The chain is transient .
- If $p=q$ or $p<q$, then $\sum_{k=0}^{\infty} \gamma_{k}=\infty$. The chain recurrent.

Example 2. Branching chain.

Each particle generates ξ particles independently in the next generation.

$X_{n} \stackrel{\text { def }}{=}$ the total no of particles in the $n^{\text {th }}$ generation

$$
\begin{gathered}
P(0,0)=1 \\
P(x, y)=P\left(\xi_{1}+\xi_{2}+\cdots+\xi_{x}=y\right), \quad x \geqslant 1
\end{gathered}
$$

Q.: Determine
$\rho \stackrel{\text { def }}{=}$ the prob that the descendants of a given
particle eventually become extinct.

We call ρ to be the extinction prob of the chain. Then,

$$
\rho=\rho_{10}=P_{1}\left(T_{0}<\infty\right)
$$

$1^{\text {st }}$ Obervation: Suppose ξ has the pdf

$$
p_{k}=P(\xi=k), k=0,1,2, \cdots
$$

Then,

$$
P(1, k)=P\left(\xi_{1}=k\right)=p_{k}, k=0,1,2, \cdots
$$

From this we see:

- If $p_{0}=0$, then each individual cannot change to zero, so population never extinct, i.e. $\rho=0$.
- If $p_{0}=1$, then it extincts for sure, i.e., $\rho=1$.

To avoid two trivial cases, we always assume

$$
0<p_{0}<1
$$

$2^{\text {nd }}$ Obervation: Assuming there are x particles, the prob for them to extinct is

$$
\rho_{x 0}=\rho^{x}
$$

(Pf.: Use independence!)
$3^{\text {rd }}$ Obervation: Let

$$
\mu \stackrel{\text { def }}{=} E(\xi)=\sum_{k=0}^{\infty} k p_{k}=\sum_{k=1}^{\infty} k p_{k}
$$

Then, $E\left(X_{n+1} \mid X_{n}=k\right)=E\left(\xi_{1}+\cdots+\xi_{k}\right)=k \mu$,

$$
\begin{aligned}
E\left(X_{n}\right) & =\sum_{k=0}^{\infty} E\left(X_{n} \mid X_{n-1}=k\right) P\left(X_{n-1}=k\right) \\
& =\sum_{k=0}^{\infty}(k \mu) P\left(x_{n-1}=k\right) \\
& =\mu E\left(X_{n-1}\right) \\
& =\cdots \\
& =\mu^{n} E\left(X_{0}\right)
\end{aligned}
$$

Claim: If $\mu<1$, then population will extinct for sure, i.e., $\rho=1$.
Proof:

$$
\begin{aligned}
P_{1}\left(T_{0}>n\right) & \leqslant P_{1}\left(X_{n} \geqslant 1\right) \quad\left(\because\left\{T_{0}>n\right\} \subseteq\left\{X_{n} \geqslant 1\right\}\right) \\
& =\sum_{k=1}^{\infty} P_{1}\left(X_{n}=k\right) \leqslant \sum_{k=1}^{\infty} k P_{1}\left(X_{n}=k\right) \\
& =\sum_{k=0}^{\infty} k P_{1}\left(X_{n}=k\right) \\
& =E\left(X_{n}\right)=\mu^{n} E\left(X_{0}\right) \xrightarrow{n \rightarrow \infty} 0(\because \mu<1)
\end{aligned}
$$

Therefore

$$
\underbrace{\rho}=\rho_{10}=P_{1}\left(T_{0}<\infty\right)=\lim _{n \rightarrow \infty} P_{1}\left(T_{0} \leqslant n\right)
$$

extinction prob

$$
=\lim _{n \rightarrow \infty}\left[1-P_{1}\left(T_{0}>n\right)\right]=1 .
$$

What about $\mu \geqslant 1$?

$$
\begin{aligned}
\rho=\rho_{10} & =P_{1}\left(T_{0}<\infty\right) \\
& =P(1,0)+\sum_{k=1}^{\infty} P(1, k) \rho_{k 0} \\
& =p_{0}+\sum_{k=1}^{\infty} p_{k} \rho^{k}=\sum_{k=0}^{\infty} p_{k} \rho^{k},
\end{aligned}
$$

i.e., ρ solves the equation $t=\Phi(t)$ with

$$
\Phi(t) \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} p_{k} t^{k}
$$

which is called the moment generating function of the pdf $\left(p_{k}\right)_{k \geq 0}$ of ξ.

Observe:

- $\Phi^{\prime}(t) \geqslant 0, \Phi^{\prime \prime}(t) \geqslant 0,(\therefore \Phi(t) \uparrow \&$ concave upward).
- $\Phi(0)=p_{0} \in(0,1), \Phi(1)=\sum_{k=0}^{\infty} p_{k}=1$.
- $\Phi^{\prime}(1)=\sum_{k=1}^{\infty} k p_{k}=E(\xi)=\mu$.

Then, we have three cases:

Case (i): $\mu<1$.

$\therefore \rho=1$ (extinct for sure, as proved before)

Case (ii): $\mu=1$.

$\therefore \rho=1$ (extinct for sure!)

Case (iii): $\mu>1$.

$\Phi(t)=t$ at $t=t_{0} \in(0,1)$ or $t=1$.
Claim: In this case, $P_{1}\left(T_{0} \leqslant n\right) \leqslant t_{0}$ for all $n=1,2, \cdots$ (proved later).

$$
\begin{aligned}
\therefore \rho=\rho_{10} & =P_{1}\left(T_{0}<\infty\right) \\
& =\lim _{n \rightarrow \infty} P_{1}\left(T_{0} \leqslant n\right) \leqslant t_{0}
\end{aligned}
$$

$\therefore \rho=t_{0}$ is the only solution.

Proof of Claim: Use induction. Set

$$
a_{n} \stackrel{\text { def }}{=} P_{1}\left(T_{0} \leqslant n\right) .
$$

$n=0: a_{0}=P_{1}\left(T_{0} \leqslant 0\right)=0<t_{0}$.
Assuming $a_{n} \leqslant t_{0}(n \geqslant 0)$, consider

$$
\begin{aligned}
a_{n+1} & =P_{1}\left(T_{0} \leqslant n+1\right) \\
& =\underbrace{P(1,0)}_{=p_{0}}+\sum_{k=1}^{\infty} \underbrace{P(1, k)}_{p_{k}} \underbrace{P_{k}\left(T_{0} \leqslant n\right)}_{=\left[P_{1}\left(T_{0} \leqslant n\right)\right]^{k}=a_{n}^{k}} \\
& =\sum_{k=0}^{\infty} p_{k} a_{n}^{k} \\
& =\Phi\left(a_{n}\right) \leqslant \Phi\left(t_{0}\right)=t_{0} \quad(\Phi \text { is nondecreasing }) .
\end{aligned}
$$

\square
e.g.: Every man has 3 kids with prob $1 / 2$ being boy and $1 / 2$ being girl. Find the prob that the male live eventually extinct.

Sol.: $p_{0}=P(\xi=0)=\frac{1}{8}, p_{1}=P(\xi=1)=\frac{3}{8}$, $p_{2}=P(\xi=2)=\frac{3}{8}, p_{3}=P(\xi=3)=\frac{1}{8}$.

$$
\begin{aligned}
& E(\xi)=0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=\frac{3}{2}>1 \\
& \Phi(t)=\frac{1}{8}+\frac{3}{8} t+\frac{3}{8} t^{2}+\frac{1}{8} t^{3} \\
& \text { let } \Phi(t)=t, \text { i.e. } t=\frac{1}{8}+\frac{3}{8} t+\frac{3}{8} t^{2}+\frac{1}{8} t^{3}
\end{aligned}
$$

Solutions: $t=1, \sqrt{5}-2$. Then

$$
\rho=\sqrt{5}-2
$$

is the extinct prob.

Example 3. Queuing chain.

Setting:

- In a queue, let ξ_{n} denote the no of arrivals in the n-th unit time. $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ are i.i.d.r.v. with pdf:

$$
f(k)=p_{k}, \quad k=0,1,2, \cdots
$$

- The service of a customer is exactly one in a unit time.

Let X_{n} denote the no of customers in the queue.

$$
\begin{aligned}
& P(x, y)=f(\underbrace{y-(x-1)}_{\text {no of arrivals }}), \quad x \geqslant 1, \\
& P(0, y)=f(y) .
\end{aligned}
$$

Note: $P(1, y)=P(0, y)$.
Q.: Assuming that the chain is irreducible, check if the chain is recurrent or transient, i.e. letting

$$
\rho=\rho_{00}=P_{0}\left(T_{0}<\infty\right)
$$

decide

$$
\text { if } \rho=1 \text { or } \rho<1 \text {. }
$$

Note. If

$$
p_{0}>0 \& p_{0}+p_{1}<1
$$

then the chain is irreducible. (Ex. 37 on Page 46).

Let

$$
\begin{aligned}
\Phi(t) & \stackrel{\text { def }}{=} p_{0}+p_{1} t+p_{2} t^{2}+\cdots \\
& =\sum_{k=0}^{\infty} p_{k} t^{k} \\
& =\sum_{k=0}^{\infty} f(k) t^{k}
\end{aligned}
$$

be the moment generating function of f.

Claim: $\rho=\rho_{00}$ solves $\Phi(t)=t$.

Pf.:

- Note

$$
\begin{gathered}
\rho_{00}=P(0,0)+\sum_{k=1}^{\infty} P(0, k) \rho_{k 0} \\
\rho_{10}=P(1,0)+\sum_{k=1}^{\infty} P(1, k) \rho_{k 0} \\
P(1, k)=P(0, k), \forall k \geq 0
\end{gathered}
$$

Therefore,

$$
\rho_{10}=\rho_{00}=\rho
$$

- To show: $\rho_{x, x-1}=\rho_{10}=\rho$ for all $x>1$.

In fact, we observe that for the chain starting at $x>1(\therefore x-1 \geq 1)$, the event $T_{x-1}=n$ means

$$
n=\min \left\{m>0: x+\left(\xi_{1}-1\right)+\cdots\left(\xi_{m}-1\right)=x-1\right\}
$$

i.e.

$$
n=\min \left\{m>0: 1+\left(\xi_{1}-1\right)+\cdots\left(\xi_{m}-1\right)=0\right\}
$$

Therefore, $P_{x}\left(T_{x-1}=n\right)=P_{1}\left(T_{0}=n\right), \forall n \geq 1$.

$$
\therefore \rho_{x, x-1}=\rho_{10}=\rho .
$$

- To show:

$$
\begin{equation*}
\rho_{x, 0}=\rho_{x, x-1} \cdot \rho_{x-1,0}, \quad \forall x \geqslant 2 \tag{*}
\end{equation*}
$$

(Ex. 39, P46). If so, then

$$
\rho_{x, 0}=\rho \rho_{x-1,0}=\cdots=\rho^{x}
$$

(also true for $x=1$), and hence

$$
\begin{aligned}
\rho=\rho_{00} & =P(0,0)+\sum_{k=1}^{\infty} P(0, k) \rho_{k 0} \\
& =p_{0}+\sum_{k=1}^{\infty} p_{k} \rho^{k} \\
& =\Phi(\rho) .
\end{aligned}
$$

Proof of $(*):$ Let $x \geq 2$. Note that for $m \geq 2$,

$$
P_{x}\left(T_{0}=m\right)=\sum_{\ell=1}^{m-1} P_{x}\left(T_{x-1}=\ell\right) P_{x-1}\left(T_{0}=m-\ell\right)
$$

Then,

$$
\begin{aligned}
\rho_{x, 0} & =P_{x}\left(T_{0}<\infty\right)=\sum_{m=1}^{\infty} P_{x}\left(T_{0}=m\right) \\
& \left.=\sum_{m=2}^{\infty} P_{x}\left(T_{0}=m\right) \quad \text { (Note: } P_{x}\left(T_{0}=1\right)=0 \text { for } x \geq 2\right) \\
& =\sum_{m=2}^{\infty} \sum_{\ell=1}^{m-1} P_{x}\left(T_{x-1}=\ell\right) P_{x-1}\left(T_{0}=m-\ell\right) \\
& =\sum_{\ell=1}^{\infty} \sum_{m=\ell+1}^{\infty} P_{x}\left(T_{x-1}=\ell\right) P_{x-1}\left(T_{0}=m-\ell\right) \text { (see later) } \\
& =\sum_{\ell=1}^{\infty} P_{x}\left(T_{x-1}=\ell\right) \rho_{x-1,0} \\
& =\rho_{x, x-1} \rho_{x-1,0} .
\end{aligned}
$$

Note:

$$
\sum_{m=2}^{\infty} \sum_{l=1}^{m-1}=\sum_{k=1}^{\infty} \sum_{m=+t 1}^{\infty} .
$$

Sum: Let $\mu=E(\xi)$. Then

- If $\mu \leqslant 1$, then $\Phi(\rho)=\rho$ has the only solution $\rho=1$. The chain is recurrent.
- If $\mu>1$, then $\Phi(\rho)=\rho$ has two solutions 1 and $t_{0} \in(0,1)$. As in the previous example, one has to take $\rho=t_{0}$. The chain is transient.

