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Chapter 0:

Review on probability
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§0.1: Probability

Perform an experiment:

An outcome: a particular state !

Sample space: the set of all outcomes, ⌦

An event: a subset of ⌦, e.g .,A ✓ ⌦
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Examples:

1. Toss a coin.

!1 = H ,!2 = T

⌦ = {H ,T} = {!1,!2}
all possible events: A = ;,⌦, {H}, {T}
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2. Toss 3 coins.

!1 = (H ,H ,H),!2 = ..., · · · ,!8 = ...

⌦ = {(H ,H ,H), (H ,H ,T ), (H ,T ,H), (T ,H ,H),

(H ,T ,T ), (T ,H ,T ), (T ,T ,H), (T ,T ,T )}

Want an event A
def
= “exactly 2 heads occur”.

Then,

A = {(H ,H ,T ), (H ,T ,H), (T ,H ,H)}
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Probability measure P : a function that assigns
real values in [0, 1] to events, satisfying

(i) P(⌦) = 1

(ii) 0  P(A)  1, 8A

(iii) P(
nS

i=1
Ai) =

nP
i=1

P(Ai), 8{Ai}ni=1 which is disjoint

(n finite or infinite)
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Probability space (⌦,F ,P):

(i) F is an event space, i.e. a collection of events
one is interested in, satisfying

(a) ⌦ 2 F
(b) If A 2 F then Ac 2 F
(c) If Ai 2 F , i = 1, 2, . . . , then

1S
i=1

Ai 2 F

F is a �-field over ⌦ in measure theoretical
term.

(ii) P : F ! [0, 1] is a probability measure.
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Examples:

1. Given ⌦, the largest �-field is the set of all
subsets of ⌦.

2. Given ⌦, the smallest �-field is F = {�,⌦}.
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Conditional probability: A,B are two events, the
probability that B happens given that A occurs is

P(B |A) = P(A \ B)

P(A)

Note:
• A,B are independent if

P(B |A) = P(B), i.e. P(A \ B) = P(A)P(B).

• Let A be a fixed event,

PA(·)
def
= P(·|A)

is called the conditional probability measure.
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Theorem. Let ⌦ =
nS

i=1
Ai where A1, . . . ,An are

disjoint events. Then, for any event B

B
A1

A2 . . . An

⌦

(i) P(B) =
nP

i=1
P(B |Ai)P(Ai)

(ii) P(Ai |B) = P(Ai\B)
P(B) = P(B |Ai )P(Ai )

nP
i=1

P(B |Ai )P(Ai )

(Bayes’ formula)
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Note:

In many practical applications, we are given
P(B |Ai) and P(Ai), and we want to find P(Ai |B),
i.e. to find the probability of the “causes”
Ai(i = 1, 2, . . . , n) subject to the outcome B .

B
A1

A2 . . . An

⌦
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Example: P(B) = P(B |A)P(A) + P(B |AC )P(AC )
(B is caused by either A or Ac)

A B ⌦

Proof:B = (B \ A) [ (B \ AC )

P(B) = P(B \ A) + P(B \ AC )

= P(B |A)P(A) + P(B |AC )P(AC ).
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One more example:

Suppose that we have 3 cards that are identical
in form, except that both sides of the first card
are colored red, both sides of the second card
are colored black, and one side of the third card
is colored red and the other side black. The 3
cards are mixed up in a hat, and 1 card is
randomly selected and put down on the ground.

If the upper side of the chosen card is colored
red, what is the probability that the other side is
colored black?
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Sol.: Denote

RR
def
= the event that the chosen card is red-red

BB
def
= the event that the chosen card is black-black

RB
def
= the event that the chosen card is red-black

R
def
= the event that the upper side of the chosen card is red

Then

P(RB|R) = P(RB \ R)

P(R)

=
P(R|RB)P(RB)

P(R|RR)P(RR) + P(R|BB)P(BB) + P(R|RB)P(RB)

=
1
2 · 1

3

1 · 1
3 + 0 · 1

3 + 1
2 · 1

3

=
1

3
.
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§0.2 Random variables and distributions

Example: Toss a coin n-times.

⌦ = {! = (!1,!2, . . . ,!n) : !i = H or T}
] of ⌦ = 2n

P({!}) = 1

2n

Let X denote the number of heads,

then X takes values in {0, 1, 2, . . . , n},
Let k = 0, 1, . . . , n, then X = k means

the event that we get k number of heads,

P(X = k) =

�n
k

�

2n
.
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Random variable: A random variable (r.v.) X on
(⌦,F ,P) is to assign an outcome with a real
number

X : ⌦ ! R
⌦ 3 ! 7! X (!) 2 R

Note: Let RX = the set of all possible values of X
on ⌦, then RX is either “discrete” or “continuous”:
Case 1: Rx is a discrete set. In this case, X is called
a discrete r.v.
Case 2: Rx is an interval of R or itself. In this case,
X is called a continuous r.v.
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Discrete random variable: Assume

X (⌦) = {k}Nk=0 (N finite or infinite)

Then the values

pk = P(X = k), (k = 0, 1, . . . ,N)

is called the probability density function (p.d.f.).

Note: {X = k} def
= {! 2 ⌦ : X (!) = k} 2 F
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Examples (Important!)

1. Binomial distribution

We perform n independent trials. At each trial,
the prob of success is p,
and the prob of failure is 1� p.

Let X denote the number of successes in n
trials. X has the p.d.f.

P(X = k) =

✓
n

k

◆
pk(1� p)n�k , 0  k  n.

def
= B(n, p)
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2. Poisson distribution:

P(X = k) = e��
�k

k!
, k = 0, 1, 2, . . .

For instance, X counts the number of arrivals in
a unit time with rate of arrivals given by � > 0.

Theorem: For each k = 0, 1, · · ·

lim
n!1,np=�

✓
n

k

◆
pk(1� p)n�k = e���

k

k!

Note: Therefore, the Poisson distribution can
be used to approximate the Binomial distribution
when p is small and n is large compared to k .
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3. Geometric distribution:

P(X = k) = p(1� p)k�1, k = 1, 2, . . .

is the prob that the first occurrence of success
requires k independent trials, each with success
probability p.

X denotes the number of trials for the first
success.
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Continuous random variable:

If

P(a  X  b) =

Z b

a
f (x)dx ,

then f is called a density function of X .

Note:
the event “a  X  b”

def
= {! 2 ⌦ : a  X (!)  b}
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Examples (Important!)

1. Uniform distribution:

f (t) =

8
<

:

1
b�a , a  t  b

0, otherwise
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2. Exponential distribution:

f (t) =

(
�e��t , t � 0

0, t < 0
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3. Normal distribution:

f (t) =
1p
2⇡�2

e�
(t�µ)2

2�2
def
= N(µ, �2)

N(0, 1): standard normal density.
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Exercise: Assume X ,Y are two independent
continuous (or discrete) r.v. with densities f , g (or
(pk), (qk)).

Find the density function for the random variable
Z = X + Y .
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§0.3 Expectation and variance

The expectation (or mean) of X :

µ = E (X ) =
X

k

kpk or

Z 1

�1
tf (t)dt

The 2nd moment of X:

E (X 2) =
X

k

k2pk , or

Z 1

�1
t2f (t)dt

The variance of X:

�2 def
= Var(X ) = E (X � µ)2 = E (X 2)� µ2

(a measurement of how spread the distribution is)
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Conditional expectation:
Discrete case: Suppose (X ,Y ) has a joint
density

p(xi , yi)
def
= P(X = xi ,Y = yi)

E (Y |X = xi) =
X

j

yjP(Y = yj |X = xi)

=
X

j

yj
p(xi , yj)

p(xi)
, p(xi) =

X

j

p(xi , yj)

Note:
a. P(Y = yj |X = xi) is the conditioned density

function of Y given X = xi .
b. E (Y |X = xi) is a function of xi , and thus

regarded as a r.v. on the �-field generated
by X , denoted by E (Y |X ).
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Continuous case: Let f (x , y) be such that

P(X  x ,Y  y) =

Z x

�1

Z y

�1
f (u, v) dudv .

Then,

E (Y |X = x) =

Z

RY

y
f (x , y)

f (x)
dy ,

f (x) =

Z

RY

f (x , y)dy .

Here E (Y |X ) can be understood to be a r.v. on
the �-field generated by X .
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§0.4 Sequence of random variables

Repeat a random experiment independently. We
obtain a sequence of random variables which are
independent and identically distributed (i.i.d)

{Xn}1n=0.

Two basic theorems are:

• Law of Large Number

• Central Limit Theorem

(Ref: Ross p.389)
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However, in many cases {Xn}1n=0 may not be
independent. There exists dependence in a certain
way.

In general, we call

• {Xn}1n=0 a discrete time stochastic process, and

• {Xt}t�0 a continuous time stochastic process.

We will mainly consider the

“Markov” processes

(to be defined) in the discrete time and continuous
time.
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1 Definitions, basic properties, the transition matrix

Markov chains were introduced in 1906 by Andrei Andreyevich Markov (1856–1922)
and were named in his honor.

1.1 An example and some interesting questions

Example 1.1. A frog hops about on 7 lily pads. The numbers next to arrows show the
probabilities with which, at the next jump, he jumps to a neighbouring lily pad (and
when out-going probabilities sum to less than 1 he stays where he is with the remaining
probability).
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0 0 0 0 0 0 1
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There are 7 ‘states’ (lily pads). In matrix P the element p57 (= 1/2) is the probability
that, when starting in state 5, the next jump takes the frog to state 7. We would like
to know where do we go, how long does it take to get there, and what happens in the
long run? Specifically:

(a) Starting in state 1, what is the probability that we are still in state 1 after 3

steps? (p(3)11 = 1/4) after 5 steps? (p(5)11 = 3/16) or after 1000 steps? (⇡ 1/5 as

limn!1 p
(n)
11 = 1/5)

(b) Starting in state 4, what is the probability that we ever reach state 7? (1/3)

(c) Starting in state 4, how long on average does it take to reach either 3 or 7? (11/3)

(d) Starting in state 2, what is the long-run proportion of time spent in state 3? (2/5)

Markov chains models/methods are useful in answering questions such as: How long
does it take to shu✏e deck of cards? How likely is a queue to overflow its bu↵er? How
long does it take for a knight making random moves on a chessboard to return to his
initial square (answer 168, if starting in a corner, 42 if starting near the centre). What
do the hyperlinks between web pages say about their relative popularities?

1

There are 7 ’states’ (lily pads). In the matrix P the
element P57 (= 1/2) is the prob that, when starting
in state 5, the next jump takes the frog t state 7.
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Some questions we may want to know:

1. Starting in state 1, what is the prob that we are
still in state 1 after 3 steps? after 5 steps? or
after 1000 steps?

2. Starting in state 4, what is the prob that we
ever reach state 7?

3. Starting in state 4, how long on average does it
take to reach either 3 or 7?

4. Starting in state 2, what is the long-run
proportion of time spent in state 3?

We can answer those by the end of this course

——End of Chapter 0——
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Chapter 1:

Markov Chain
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§1.1: Definition & Examples

Example:

• Consider the weather (0=Sunny, 1=Rainy,
2=Cloundy) of days in Hong Kong.

• Let X0 be a r.v. describing the weather of the
0th day, then

X0 = 0, 1, or 2,
i.e. X0 takes values in

S := {0, 1, 2}.
• Similarly, for n � 0 let Xn be a r.v. describing
the weather of the nth day, then Xn = 0, 1, or 2,
i.e. Xn takes values in the same state space S .

• In the end we get a chain {Xn}n�0.
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Definitions:

• Let S be a finite or countably infinite set of
integers.

For instance, S = {0, 1, 2, . . . ,N}, or
S = {0, 1, 2, . . . }, or S = {. . . ,�1, 0, 1, . . . }.

We call each element of S a state and S the
state space.

• Let {Xn}1n=0 be a sequence of r.v. taking values
in S , defined on a common probability space
(⌦,F ,P).
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Notation for the future:

• For random variables, we use

X ,Y ,Z , · · ·

• For states (which are values of random variables),
we use

x , y , z , · · · 2 S

or
xi , yi , zi , · · · 2 S ,

or
i , j , k , · · · 2 S .
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Def: {Xn}1n=0 is a Markov chain if

P(Xn+1 = xn+1|X0 = x0, . . . ,Xn�1 = xn�1,Xn = xn)

= P(Xn+1 = xn+1|Xn = xn). (⇤)

Note:

• (⇤) is called the Markov property which says that given the
present state, the past states have no influence on the future!

• P(Xn+1 = y |Xn = x) is called the transition probability. If
it is independent of n, we denote

P(x , y) = P(Xn+1 = y |Xn = x) = P(X1 = y |X0 = x)

which is the transition probability from state x to state y . In

such case, {Xn}1n=0 is called a time-homogeneous Markov

chain.
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It is clear that

(i) P(x , y) � 0.

(ii)
P
y2S

P(x , y) = 1.

Proof:

(i) P(x , y) = P(Xn+1 = y |Xn = x) � 0.

(ii)
P
y2S

P(x , y) =
P
y2S

P(Xn+1 = y |Xn = x) = 1.
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e.g. for S = {0, 1, 2, . . . ,N} (N finite or 1), we
may express all the transition probabilities

P(x , y), x , y 2 S

as a matrix form:

P = [P(x , y)] (or [P(i , j)])

=

2

6664

P(0, 0) P(0, 1) · · · P(0,N)
P(1, 0) P(1, 1) · · · P(1,N)

...
... . . . ...

P(N , 0) P(N , 1) · · · P(N ,N)

3

7775

which is called the Markov matrix (or transition
matrix) (Note: each row vector is a probability vector).
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Example 1. Toss a possibly biased coin repeatedly
with prob p for H and 1� p for T .

Q.: Set up the model as a Markov chain.
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Example 2. Consider a machine that at the start
of the day is broken down or in operation. Assume

(i) if it is broken down, the prob that it will be
repaired and in operation on the next day is p,
(0 < p < 1).

(ii) if it is in operation, the prob that it will be
broken down on the next day is q, (0 < q < 1).

Q: Set up the model as a Markov chain. Further,

(a) Find the transition prob.

(b) Find the prob that the machine is broken down on the nth

day.

(c) In the long term, what is the prob that the machine is
broken down on a day.
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Example 3 (Random walk):

Let {⇠i}1i=1 be i.i.d. r.v. taking values in

S = {· · · ,�1, 0, 1, · · · }

and having a pdf f , i.e. for each i

P(⇠i = k) = f (k), k = 0,±1,±2, · · ·

Let Xn = X0 + ⇠1 + · · ·+ ⇠n, where X0 is the initial
position independent of {⇠i}1i=1. Then,

P(x , y) = P(Xn+1 = y |Xn = x)

= P(⇠n+1 = y � x |Xn = x)

= P(⇠n+1 = y � x)

= f (y � x).
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A simple random walk:

Consider a move to left or right with prob p, 1� p
resp, i.e. ⇠i = +1 or � 1 with prob p, 1� p resp.

How does the chain behave as n ! 1 ?
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Example 4 (Gambler’s ruin chain)

A gambler starts out with a certain amount and
bets against the house.

(i) Each time he wins or loses $1 with prob p and
q = 1� p resp.

(ii) If he reaches $0, he is ruined and his amount
remain $0. (he quits playing)

Q.: Set up the model as a Markov chain.
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Let Xn denote the amount he has at the n-th stage.
S = {0, 1, 2, · · · }.

• For x = 0,
P(0, 0) = 1,
P(0, y) = 0, y = 1, 2, · · ·

Def: A state a 2 S is absorbing if P(a, a) = 1,
i.e. P(a, y) = 0, 8 y 6= a.

) 0 is an absorbing state.

• For x > 0,

P(x , y) =

8
><

>:

p y = x + 1

1� p y = x � 1

0 otherwise
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P =

2

6664

1 0 0 · · · · · ·
1� p 0 p · · · · · ·
0 1� p 0 p · · ·
· · · · · · . . . . . . . . .

3

7775
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A modification of the model: Add a rule

(iii) If he reaches $N, he quits playing.

Then,

S = {0, 1, · · · ,N}.

0 and N are absorbing,

P(x , y) =

8
><

>:

p y = x + 1

1� p y = x � 1

0 otherwise

for 1  x  N�1.
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P =

2

66666664

1 0 0 · · · · · · · · ·
1� p 0 p · · · · · · · · ·
0 1� p 0 p · · · · · ·
· · · · · · . . . . . . . . . · · ·
· · · · · · · · · 1� p 0 p · · ·
· · · · · · · · · · · · · · · 0 1

3

77777775
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Alternative view to the above modified “gambler’s
ruin chain”: Two gamblers start a series of $1 bets
against each other.

(i) The total amount is $N .

(ii) p = prob of the 1st gambler wining
q = 1� p = prob of the 2nd gambler winning.

(iii) The game is over when one of them losses all.

Xn
def
= $ of the 1st gambler at the nth stage

Q:

• What is the expected value?

• Wo has higher prob of winning?

• How long does the game last?
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Remark: The more general form of the chains in
examples 3 & 4:

P(x , y) =

8
>>>><

>>>>:

px y = x � 1

qx y = x + 1

rx y = x

0 otherwise

which corresponds to the “birth & death” chain.
Here

px , qx , rx � 0,

px + qx + rx = 1.
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Example 5 (Queueing chain)

Consider a check out counter at a supermarket.

(i) Let ⇠n denote the number of arrivals in the nth

period (say, one minute). Then {⇠n}1n=1 is i.i.d.
r.v. having pdf f (usually Poisson distribution).

(ii) Suppose that if there are any customers waiting
for service at the beginning of any given period,
then exactly one customer will be served during
that period.

Q.: Set up the model as a Markov chain.
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• n = 0 :

X0
def
= the number of persons on the line initially.

• n � 1 :

Xn
def
= the number of persons on the line present at
the end of the nth period.

• Then,

Xn+1 =

(
0 + ⇠n+1 if Xn = 0

Xn + ⇠n+1 � 1 if Xn � 1

54/323



• For x = 0,

P(0, y) = P(Xn+1 = y |Xn = 0)

= P(⇠n+1 = y |Xn = 0)

= P(⇠n+1 = y)

= f (y).

• For x � 1,

P(x , y) = P(Xn+1 = y |Xn = x)

= P(⇠n+1 = y � x + 1|Xn = x)

= P(⇠n+1 = y � x + 1)

= f (y � x + 1).
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For instance, f is Poisson:

f (k) = P(⇠n = k) = e��
�k

k!
, k = 0, 1, 2, · · ·

Then

P = e��

2

6666664

1 � �
2

2!
�
3

3! · · ·
1 � �

2

2!
�
3

3! · · ·
0 1 � �

2

2! · · ·
· · · . . . . . . . . . · · ·
0 · · · · · · · · · · · ·

3

7777775
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Example 6 (Branching chain, population growth)

Each individual generates ⇠ o↵spring in the next
generation independently.

- -
-

••-
- - -

Oth
generation

- t.tn.  . .

H M
1st generation

- oo- •

*•-at
-

#
fold generation

- •-•-•at - -
3rd generation

1
( 1 1

1 1 1
1

1 1 J
1

Xn
def
= the total NO in the nth generation.

P(x , y) = P(⇠1 + ⇠2 + · · ·+ ⇠x = y)

Question concerns the extinction or growth of the population!
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§1.2 Computations with transition probabilities

Setup:

• {Xn}1n=0: a time-homogeneous Markov chain

• S = {0, 1, 2, . . . ,N}: state space
(N : finite or 1)

• P = [P(x , y)] = [P(Xn+1 = y |Xn = x)]:
transition prob matrix
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Question 1: Given pdf of X0, can one compute
pdf of Xn for any n � 1?

Let the pdf of X0 be

⇡(0)
k

def
= P(X0 = k), k = 0, 1, · · · ,N ,

or equivalently we write in the prob row-vector form

⇡(0) = [⇡(0)
0 , ⇡(0)

1 , · · · , ⇡(0)
N ].
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• n = 1 : P(X1 = k), k 2 S? or ⇡(1) = [⇡(1)
0 , · · · , ⇡(1)

N ]?

P(X1 = k) =
X

i2S

P(X1 = k ,X0 = i)

=
X

i2S

P(X1 = k |X0 = i)P(X0 = i)

= [P(X0 = 0),P(X0 = 1), . . . ,P(X0 = N)]

2

6664

P(0, k)
P(1, k)

...
P(N, k)

3

7775

Write them for k = 0, 1, · · · ,N in matrix:
[P(X1 = 0),P(X1 = 1), . . . ,P(X1 = N)]

=[P(X0 = 0),P(X0 = 1), . . . ,P(X0 = N)]

2

6664

P(0, 0) P(0, 1) · · · P(0,N)
P(1, 0) P(1, 1) · · · P(1,N)

...
...

. . .
...

P(N, 0) P(N, 1) · · · P(N,N)

3

7775

i.e.
⇡(1) = ⇡(0)P
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• In general, for n � 1, setting the pdf of Xn as a
probability row-vector in the form

⇡(n) = [P(Xn = 0),P(Xn = 1), · · · ,P(Xn = N)],

Then,

⇡(n) = ⇡(n�1)P .
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• Then, by iteration,

⇡(n) = ⇡(n�1)P

= ⇡(n�2)P · P
= · · ·
= ⇡(0) P · P · . . . · P| {z }

n terms

= ⇡(0)Pn

where
Pn = P · P · . . . · P| {z }

product of n terms

Theorem: ⇡(n) = ⇡(0)Pn, n = 1, 2, · · ·
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Remark: How to compute the matrix product

Pn := P · P · · · ·P| {z }
n terms

, n = 2, 3, · · ·

Indeed, for x , y 2 S ,

P2(x , y) =
X

x12S

P(x , x1)P(x1, y)

P3(x , y) =
X

x1

X

x2

P(x , x1)P(x1, x2)P(x2, y)

· · ·

Pn(x , y) =
X

x1

X

x2

· · ·
X

xn�1

P(x , x1)P(x1, x2) · · ·P(xn�1, y).

Proof: Left for an exercise. Argument: use induction in n

and the formula Pn = Pn�1 · P .
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Proposition:

(i) P(Xn = y) =
P
x
⇡(0)(x)Pn(x , y).

(ii) P(Xn = y |X0 = x) = Pn(x , y).

Proof: (i) is a direct consequence of the formula ⇡
(n) = ⇡

(0)Pn.
To show (ii),

P(Xn = y |X0 = x)

= P(Xn = y ,Xn�1 2 S , · · · ,X1 2 S |X0 = x)

=
X

x12S

· · ·
X

xn�12S

P(Xn = y ,Xn�1 = xn�1, · · · ,X1 = x1|X0 = x)(tutorial)

=
X

x1,··· ,xn�12S

P(Xn = y ,Xn�1 = xn�1, · · · ,X1 = x1,X0 = x)
P(X0 = x)

=
X

x1,··· ,xn�12S

P(X0 = x)P(x0, x1) · · ·P(xn�1, y)
P(X0 = x)

(proof later)

=
X

x1,··· ,xn�12S

P(x , x1) · · ·P(xn�1, y) = Pn(x , y).
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Claim:

P(X0 = x0,X1 = x1, · · · ,Xn = xn)

= P(X0 = x0)P(x0, x1) · · ·P(xn�1, xn).

Proof of claim:
P(X0 = x0,X1 = x1, · · ·| {z }

A

,Xn = xn| {z }
B

)

= P(Xn = xn|X0 = x0, · · · ,Xn�1 = xn�1)

·P(X0 = x0, · · · ,Xn�1 = xn�1)

= P(Xn = xn|Xn�1 = xn�1)P(X0 = x0,X1 = x1, · · · ,Xn�1 = xn�1)

= P(xn�1, xn)P(X0 = x0,X1 = x1, · · · ,Xn�1 = xn�1)

= · · ·
= P(xn�1, xn)P(xn�2, xn�1) · · ·P(x0, x1)P(X0 = x0).
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Remark: (ii) also immediately implies (i). In fact,

P(Xn = y)
by def
=

X

x

P(Xn = y |X0 = x)P(X0 = x)

by (ii)
=

X

x

Pn(x , y)⇡(0)(x).
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Definition:

Pm(x , y), (m = 0, 1, · · · )

is called the m-step transition function, which
gives the prob of going from state x to state y in m
steps. Here we set

P0(x , y) = �xy =

(
1, if x = y

0, otherwise.

Correspondingly, Pm is called the m-step
transition matrix.
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Proposition:

P(Xn+m = y |Xn = x) = Pm(x , y).

Proof
P(Xn+m = y|Xn = x)

= P(Xn+m = y, Xn+m�1 2 S, · · · , Xn+1 2 S|Xn = x)

=
X

xn+m�1

· · ·
X

xn+1

P(Xn+m = y, Xn+m�1 = xn+m�1, · · · , Xn+1 = xn+1|Xn = x)

=
X

xn+1,··· ,xn+m�1

P(Xn+m = y, · · · , Xn+1 = xn+1|X0 2 S, · · · , Xn�1 2 S, Xn = x) (⇤)

=
X

xn+1,··· ,xn+m�1

P(x, xn+1) · · · P(xn+m�1, y) (see below)

= Pm(x, y). (by def of Pm)

Each term in the sum (⇤) is equal to

P(Xn+m = y, · · · , Xn+1 = xn+1|X0 = x0, · · · , Xn�1 = xn�1, Xn = x)

= P(Xn+m = y, Xn+m�1, · · · , X0 = x0)/P(Xn = x, Xn�1 = xn�1, · · · , X0 = x0)

=
P(X0 = x0)P(x0, x1) · · · P(x, xn+1)P(xn+1, xn+2) · · · P(Xn+m�1, y)

P(X0 = x0)P(x0, x1) · · · P(xn�1, x)

= P(x, xn+1) · · · P(xn+m�1, y).
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Remark: To compute

P(Xn = y |X0 = x)

= P(X1+n = y |X1 = x)

= P(X2+n = y |X2 = x)

= · · ·
= P(Xm+n = y |Xm = x), m = 0, 1, 2, · · ·

is equivalent to compute Pn(x , y), that is to find
Pn.
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For n large, one can reduce P to a diagonal matrix
(if possible)

P = QDQ�1

where D =

2

4
�0 · · · 0
... . . . ...
0 · · · �N

3

5, and Q is the matrix for

change basis consisting of eigenvectors. Then

Pn =
⇥
QDQ�1

⇤n
= QDnQ�1 = Q

2

4
�n
0 · · · 0
... . . . ...
0 · · · �n

N

3

5Q�1.

Hence Pn can be calculated in such situation.

Exercise: Do this for the two-state Markov matrix.
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Question 2: How to compute the conditional
prob that the chain visits y in finite time given
that it starts from x?

We set it as ⇢xy , then

⇢xy = P(9 n � 1 such that Xn = y |X0 = x).

nil
?

Ya ...7 7
d no 3

R ?

n=O n=2
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We are interested in a state x such that

⇢xx = 1, or ⇢xx < 1.

? n=1

7

J
x

? n=2

t :
=3
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Def (Hitting Time):
Let A ✓ S . The hitting time TA of A is defined
by

TA
def
= min{n � 1 : Xn 2 A}.

Rks:
• TA = the first positive time the chain hits A.
TA is a r.v. Range of TA = {1, 2, 3, · · · } [ {1}.
Convention: TA = 1 if Xn /2 A for all n � 1.
For m = 1, 2, · · ·

{TA = m} = {X1 /2 A, · · · ,Xm�1 /2 A,Xm 2 A}.

• Convention:

Ty
def
= T{y} = min{n � 1 : Xn = y}, y 2 S ,

i.e. the first positive time the chain visits y .
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A convenient notion:

Px(·)
def
= P( · |X0 = x)

i.e. the probabilities of various events defined in
terms of the Markov chain starting at x 2 S .

For instance,

Px(A) = P(A|X0 = x)

is the prob of A given that the chain starts at x .
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Prop (i) Px(Ty = 1) = P(x , y).

Proof:
* {Ty = 1} = {X1 = y}
)

Px(Ty = 1)

= P(X1 = y |X0 = x)

= P(x , y).
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Prop (ii)

Px(Ty = n+1) =
X

z 6=y

P(x , z)Pz(Ty = n), n � 1.

Proof: Note
{Ty = n + 1} =

S
z:z 6=y

{X1 = z ,X2 6= y , · · · ,Xn 6= y ,Xn+1 = y}.

)
Px(Ty = n + 1)

=
X

z 6=y

Px(X1 = z ,X2 6= y , · · · ,Xn 6= y ,Xn+1 = y)

=
X

z 6=y

Px(X1 = z)Px(X2 6= y , · · · ,Xn 6= y ,Xn+1 = y |X1 = z)

=
X

z 6=y

P(X1 = z |X0 = x)| {z }
=P(x,z)

P(X2 6= y , · · · ,Xn 6= y ,Xn+1 = y |X0 = x ,X1 = z)| {z }
=Pz (Ty=n) why?
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Recall an Exercise:

P(Xn+1 2 B1, · · · ,Xn+m 2 Bm|X0 2 A0, · · · ,Xn�1 2 An�1,Xn = x)

= Px(X1 2 B1,X2 2 B2, · · · ,Xm 2 Bm).

See the tutorial for the proof.

Rk: It is essentially due to the Markovian property (i.e., given

“the present” state, “the past” has no influence on “the future”).

So, the prob on the LHS is understood to be the prob in the

situation when the chain initially starts at x .

) P(X2 6= y , · · · ,Xn 6= y ,Xn+1 = y |X0 = x ,X1 = z)

= Pz(X1 6= y ,X2 6= y , · · · ,Xn�1 6= y ,Xn = y)

= Pz(Ty = n).
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Prop (iii)

Pn(x , y) =
nX

m=1

Px(Ty = m)Pn�m(y , y).

Proof: Note: Pn(x , y) = P(Xn = y |X0 = x) = Px(Xn = y)

{Xn = y} =
nS

m=1
{Ty = m,Xn = y} (disjoint union)

) Pn(x , y) = Px(Xn = y)

=
nX

m=1

Px(Ty = m,Xn = y)

=
nX

m=1

Px(Ty = m)Px(Xn = y |Ty = m)

=
nX

m=1

Px(Ty = m)P(Xn = y |X0 = x ,X1 6= y , · · · ,Xm�1 6= y ,Xm = y)

=
nX

m=1

Px(Ty = m)Pn�m(y , y).
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Sum:

Proposition:

(i) Px(Ty = 1) = P(x , y).

(ii) Px(Ty = n + 1) =
P
z 6=y

P(x , z)Pz(Ty = n), n � 1.

(iii) Pn(x , y) =
nP

m=1
Px(Ty = m)Pn�m(y , y).
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Corollary: If a 2 S is absorbing , i.e. P(a, a) =
1, then for any n � 1,Pn(x , a) = Px(Ta  n).

Proof:

Pn(x , a) =
nX

m=1

Px(Ta = m) Pn�m(a, a)| {z }
=1 (to be shown later)

=
nX

m=1

Px(Ta = m)

= Px([n
m=1{Ta = m})

= Px(Ta  n).
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It remains to show: For any n � 0,Pn(a, a) = 1.
Indeed:
• n = 0, 1 is obvious.
• n � 2:

Pn(a, a) =
X

x1,··· ,xn�1

P(a, x1)P(x1, x2) · · ·P(xn�1, a)

=
X

x2,··· ,xn�1

P(a, x2) · · ·P(xn�1, a)

= · · ·
=

X

xn�1

P(a, xn�1)P(xn�1, a)

= P(a, a)

= 1.
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Recall: ⇢xy = Px(Ty < 1) is the prob that the
chain starting at x will visit y at some positive time.

In particular,

⇢yy = Py(Ty < 1)

is the prob that the chain starting at y will ever
return to y .
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Def.:

• A state y is called recurrent if ⇢yy = 1, and
transient if ⇢yy < 1.

• A chain is called a recurrent (transient) chain if
all states are recurrent (transient).

Rk: An absorbing state is recurrent.
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Example:

P =

1 2 3 4
2

66664

3

77775

1 1
2

1
2 0 0

2 1
3

2
3 0 0

3 0 1
2

1
4

1
4

4 0 0 1
2

1
2

.

Q: Find the matrix [⇢xy ] from P = [P(x , y)].

2/3 1/4 Yz

%
.

" 2ft,Pak '*LP
Yz Yz
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2/3 1/4 Yz

%
.

" 2ft,Pak '*LP
Yz Yz

Observe:
(i) 0 = ⇢13 = ⇢14, 0 = ⇢23 = ⇢24.
(ii) 1 = ⇢11 = ⇢22, ) 1, 2 are recurrent.
(iii) ⇢33 < 1, ⇢44 < 1, ) 3, 4 are transient.

P =

1 2 3 4
2

66664

3

77775

1 1 ⇤ 0 0

2 ⇤ 1 0 0

3 ⇤ ⇤ ⇤ ⇤
4 ⇤ ⇤ ⇤ ⇤

.
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Recalling ⇢xy = Px(Ty < 1), we have

⇢xy = P(x , y) +
X

z :z 6=y

P(x , z)⇢zy

(Exercise)

Argument: Start at x .

• If Ty = 1, i.e. visit y at n = 1, prob is P(x , y).

• If it does not visit y at n = 1, then it will first
visit z(z 6= y) and then start from such z to
visit y at some positive time.
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2/3 1/4 Yz

%
.

" 2ft,Pak '*LP
Yz Yz

(
⇢33 =⇠⇠⇠⇠⇠:00 · ⇢13 +�����*0

1
2 · ⇢23 + 1

4 +
1
4 · ⇢43

⇢43 =⇠⇠⇠⇠⇠:00 · ⇢13 +⇠⇠⇠⇠⇠:00 · ⇢23 + 1
2 +

1
2 · ⇢43

) ⇢43 = 1, ⇢33 =
1

2
Similarly,

⇢34 =⇠⇠⇠⇠:0
0 · ⇢14 +

⇢
⇢
⇢⇢>

0
1

2
· ⇢24 +

1

4
· ⇢34 +

1

4
, ) ⇢34 =

1

3
,

⇢44 =⇠⇠⇠⇠:0
0 · ⇢14 +⇠⇠⇠⇠:0

0 · ⇢24 +
1

2
· ⇢34 +

1

2
) ⇢44 =

2

3
.
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[⇢ij ] =

1 2 3 4
2

66664

3

77775

1 1 1 0 0

2 1 1 0 0

3 1 1 1
2

1
3

4 1 1 1 2
3

.

Note: There is a matrix argument for finding [⇢xy ].
See Lawler p.23-27.
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Question 3. Times of visit to a state.

{Xn}1n=0: a time-homogeneous Markov chain

S = {0, · · · ,N} (N : finite or 1): state space

X0 = x 2 S

N(y)
def
= no of times that Xn(n � 1) visits y .

Note:

• N(y) =
1P
n=1

1y (Xn), where 1y (Xn) =

(
1, Xn = y

0, Xn 6= y

• N(y) 2 {0, 1, 2, 3, · · · } [ {1}.
{N(y) = 0} = “y is not visited”

{N(y) = k} = “y is visited exactly k times”

{N(y) = 1} = “y is visited infinitely times”
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Some Facts:

• {N(y) � 1}| {z }
“y is visited at least one time”

= {Ty < 1}
| {z }

“y is visited at a positive finite time”

.

) Px(N(y) � 1) = Px(Ty < 1) = ⇢xy .

• {N(y) = 0} = {N(y) � 1}c .

) Px(N(y) = 0) = 1� ⇢xy .
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Claim: For m � 1, Px(N(y) � m) = ⇢xy⇢m�1
yy .

Case m = 2. To show: Px(N(y) � 2) = ⇢xy⇢yy .
Note:

{N(y) � 2} = [k�1 [n�1 {chain starting at x first visits y at k � 1

and next visit y again after n units of time}.

For each k � 1 and n � 1, prob = Px(Ty = k)Py (Ty = n).
Therefore,

Px(N(y) � 2) =
1X

n=1

1X

k=1

Px(Ty = k)Py (Ty = n)

=
1X

n=1

Px(Ty < 1)Py (Ty = n)

= ⇢xyPy (Ty < 1)

= ⇢xy⇢yy .

Use the same idea to show Px(N(y) � m) = ⇢xy⇢
m�1
yy for m � 2.
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A further fact:

{N(y) = m} = {N(y) � m}\{N(y) � m + 1}

MY ) > in

Niy ) 3Mt 1

• • • • • >

my M mtn

) Px(N(y) = m) = ⇢xy⇢
m�1
yy � ⇢xy⇢

(m+1)�1
yy

= ⇢xy⇢
m�1
yy (1� ⇢yy).
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Sum:

Proposition:

(i) Px(N(y) � 1) = Px(Ty < 1) = ⇢xy ,

Px(N(y) = 0) = 1� ⇢xy .

(ii) For m � 1,

Px(N(y) � m) = ⇢xy⇢m�1
yy ,

Px(N(y) = m) = ⇢xy⇢m�1
yy (1� ⇢yy).
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Proposition: Ex(N(y)) =
1P
n=1

Pn(x , y).

l.h.s.=the expected no of visit to y from x.

Warning: The value can be 1!

Proof:

Ex(N(y)) = Ex(
1X

n=1

1y (Xn))

=
1X

n=1

Ex(1y (Xn))

=
1X

n=1

Px(Xn = y)

=
1X

n=1

P(Xn = y |X0 = x) =
1X

n=1

Pn(x , y).
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Theorem (i): y is transient i↵ Py(N(y) = 1) = 0.

Proof: Note

Px(N(y) = 1) = lim
m!1

Px(N(y) > m)

= lim
m!1

⇢xy⇢
m�1
yy

=

⇢
0 if ⇢yy < 1
⇢xy if ⇢yy = 1

(⇤)

) y transient

() ⇢yy < 1

(⇤)() Py(N(y) = 1) = 0.
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Theorem (ii): If y is transient then

Ex(N(y)) =
⇢xy

1� ⇢yy
< 1, x 2 S .

Proof: For a transient state y ,

Ex(N(y)) =
1X

m=0

mPx(N(y) = m)

=
1X

m=1

m⇢xy⇢
m�1
yy (1� ⇢yy ) (⇢yy < 1)

= ⇢xy (1� ⇢yy ) ·
1

(1� ⇢yy )2

=
⇢xy

1� ⇢yy
< 1.
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Theorem (iii):
y is recurrent,
i↵ Py(N(y) = 1) = 1,
i↵ Ey(N(y)) = 1.

Proof: y recurrent

() ⇢yy = 1
(⇤)() Py(N(y) = 1) = 1

(⇤⇤)() Ey(N(y)) = 1.

To show (⇤⇤):

“=)”: * Py(N(y) = 1) = 1
) Ey(N(y)) = 1.

“(=”: If Ey(N(y)) = 1 then y must be recurrent
by Theorem (ii).
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Remark: If y is recurrent, then for x 2 S ,

Ex(N(y)) =

8
<

:

0 if ⇢xy = 0

1 if ⇢xy > 0.

WHY? It is heuristically obvious.

Left for an exercise.
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Corollary: If S is finite, then the chain must have
at least one recurrent state.

Proof: Otherwise, all states are transient. Then,
for any x&y ,

1X

n=1

Pn(x , y) = Ex(N(y)) =
⇢xy

1� ⇢yy
< 1.

) lim
n!1

Pn(x , y) = 0. Then

0 =
X

y2S

lim
n!1

Pn(x , y)

= lim
n!1

X

y2S

Pn(x , y) (S : finite)

= lim
n!1

Px(Xn 2 S) = lim
n!1

1 = 1.
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Question 4. Decomposition of state space.

Def: x leads to y (denoted by x ! y) if

⇢xy > 0.

Fact 1: x ! y (i.e. ⇢xy > 0) i↵

Pn(x , y) > 0 for some n > 1.

Proof: Note:
• ⇢xy = Px(Ty < 1) = Px({9m � 1 s.t. Xm = y}).
• Pn(x , y) = P(Xn = y |X0 = x) = Px(Xn = y).
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x -Fahy

M MNTynypr→y-yytpfz
m

Kiethfete.EE#ejxy
m

garniturereturn R Y returnwaymust
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Fact 2:
x ! y
y ! z

�
=) x ! z .

Proof: Note

x -Fahy

M MNTynypr→y-yytpfz
m

Kiethfete.EE#ejxy
m

garniturereturn R Y returnwaymust

Pn+m(x , z) =
P

i2S P
n(x , i)Pm(i , z) > Pn(x , y)Pm(y , z) > 0.
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Fact 3:

x recurrent (⇢xx = 1)
x ! y

�
=)

8
<

:

(i) y ! x
(ii) y recurrent
(iii) ⇢yx = ⇢xy = 1

Proof (Heuristic):

x -Fahy

M MNTynypr→y-yytpfz
m

Kiethfete.EE#ejxy
m

garniturereturn R Y returnwaymust

x -Fahy

M MNTynypr→y-yytpfz
m

Kiethfete.EE#ejxy
m

garniturereturn R Y returnwaymust
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Def.:

(i) C ✓ S is closed if

⇢xy = 0, 8 x 2 C , 8 y /2 C ,

i.e. no state in C leads to any state out C .

(ii) A closed set C is irreducible if

x ! y (i.e. ⇢xy > 0), 8 x 2 C , 8 y 2 C ,

namely, any two in C can communicate with
each other.

(iii) {Xn}1n=0 is an irreducible MC if its state space
S is irreducible.
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Remark (a): One can claim that

C is closed, i.e. ⇢xy = 0, 8x 2 C , 8y /2 C (1)

() Pn(x , y) = 0, 8x 2 C , 8y /2 C , 8n > 1 (2)

() P(x , y) = 0, 8n 2 C , 8y /2 C . (3)

• Direct to see: (1) () (2) =) (3).

• To show (3) =) (2): For x 2 C & y /2 C ,

P2(x , y) =
X

x12S

P(x , x1)P(x1, y)

=
X

x12C

P(x , x1)⇠⇠⇠⇠⇠:0
P(x1, y) +

X

x1 /2C
⇠⇠⇠⇠⇠:0
P(x , x1) P(x1, y)

= 0.

Induction =) Pn(x , y) = 0, 8n > 1.
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Remark (b): If

C is closed, x 2 C , P(x , y) > 0

then
y 2 C .

Remark (c): If C ⇢ S is closed, then

{Xn}1n=0

can also be regarded as a Markov Chain with the
state space C .
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Theorem: If C is an irreducible closed set, then
either

all states in C are recurrent

or

all states in C are transient.

In particular, if C is a finite irreducible closed set,
then all states in C must be recurrent.

Proof: Two cases in general:
(i) C does NOT contain any recurrent state. In the case, all

states in C are transient.
(ii) C contains at least one recurrent state. As C is

irreducible, all states in C are recurrent.

The particular case follows from the fact that any finite closed

set must contain at least one recurrent state.
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Set

SR = {recurrent states},
ST = {transient states}.

Then,
S = SR [ ST .

• ← •

Sr S
,

•X->•

Sr

*
9

E.
• • #PI C 2 okxo S

,÷I ⇐

Ck •#•

) SR is closed!

A further question: Is SR irreducible? namely, can any

two recurrent states communicate to each other?
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Observe: Assume SR 6= �, for instance, 9 x0 2 SR .
Define

Cx0 = {x 2 SR : x0 ! x}.
Then, Cx0 must be closed & irreducible.

Proof:

(1) “Cx0 closed” () “If x 2 Cx0 & x ! y 2 S then y 2 Cx0”
(Indeed, y 2 SR ,) x0 ! x ! y 2 SR)

(2) “Cx0 irreducible” () “ If x , y 2 Cx0 then x ! y”.

Indeed,
x0 ! x 2 SR

x0 ! y 2 SR

�
=) x ! x0 ! y .
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Theorem: Assume SR 6= �. Then

SR =
k[

i=1

Ci (k : finite or infinite),

where Ci , 1 6 i 6 k are disjoint irreducible closed
sets of recurrent states.

Proof: It su�ces to show: If C1&C2 are two irreducible &
closed sets, then either C1 = C2 or C1 \ C2 = �.

Assuming C1 \ C2 6= �, we need to show C1 = C2. In fact, let

y 2 C1 be arbitrary, we want: y 2 C2

() C1 ✓ C2 ✓ C1).Indeed, 9x 2 C1 \ C2, then C2 3 x ! y .

) y 2 C2.
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C
, Cz Ch

× × ×

• . • ×
× x ×

x ×
- - - : . . .

"

.

y

re a a

x

×

x .

"

S¥
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Corollary: If C is an irreducible & closed set, then

either C ✓ SR or C ✓ ST .

In particular, if C is a finite, irreducible & closed
set, then

C ✓ SR .
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In terms of the (disjoint) decomposition

S = SR [ ST =
�
[k
i=1Ci

�
[ ST ,

we may rewrite P as the canonical form:

P =

C1 C2 · · · Ck ST

C1 ⇤ 0 · · · 0 0

C2 0 ⇤ . . . 0 0
...

... . . . ⇤ 0 0

Ck 0 0 0 ⇤ 0

ST ⇤ ⇤ ⇤ ⇤ ⇤

,

where ⇤ denotes the sub-matrix with possible 6= 0
entries.
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Example:

P =

2

666666666664

1 0 0 0 0 0

1
4

1
2

1
4 0 0 0

0 1
5

2
5

1
5 0 1

5

0 0 0 1
6

1
3

1
2

0 0 0 1
2 0 1

2

0 0 0 1
4 0 3

4

3

777777777775

Q.: Determine S = SR [ ST =
�
[k
i=1Ci

�
[ ST .
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• 1 ! 1 ) C1 = {1}.
• 4 ! 5 ! 6 ! 4 (irreducible), and 4, 5, 6 do not
lead to any other state (closed). ) C2 = {4, 5, 6}.
• 2 ! 1, 3 ! 4, ) ST = {2, 3}.

I → I c

'

. 9=43

4 → 5 → 6-74
.

'

.
a = { 4.5.63

Pr
A⇐→s→Fa

TV2=>3
U o
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We then reformulate P in the canonical form of

P =

a = 1 b = 4 c = 5 d = 6 e = 2 f = 3
2

666666666664

3

777777777775

a = 1 1 0 0 0 0 0

b = 4 0 1
6

1
3

1
2 0 0

c = 5 0 1
2 0 1

2 0 0

d = 6 0 1
4 0 3

4 0 0

e = 2 1
4 0 0 0 1

2
1
4

f = 3 0 1
5 0 1

5
1
5

2
5

.
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Final Issue: Assume that C is an irreducible &
closed set of recurrent states. Then,

Tc
def
= min{n > 1 : Xn 2 C}

denotes the hitting time of C .

We can also consider

⇢C (x)
def
= Px(TC < 1)

is the prob that the chain starting at x hits C in
finite time (or is absorbed by the set C ).
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NOTE: Once the chain hits C , it remains in C
forever. (Why?)

) ⇢C (·) is called the absorption prob.

It is clear to see:

⇢C (x) =

(
1 if x 2 C ,

0 if x is recurrent but /2 C .

Q.: How to compute ⇢C (x), x 2 ST?
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Indeed, assume ST is finite, then for x 2 ST ,

⇢C (x) =
X

y2C

P(x , y) +
X

y2ST

P(x , y)⇢C (y). (⇤)

Assume dT
def
= # of ST is finite

# of unknowns = dT : ⇢C (x), x 2 ST
# of equations = dT
) it is possible to find out ⇢C (x), x 2 ST by solving
the linear system of dT equations.

Theorem. Let ST be finite. Then (⇤) admits
a unique solution.

Proof. Omitted. 119/323



Example: Find ⇢C2(e)| {z }
def
=x

, ⇢C2(f )| {z }
def
=y

?

'

A

⑤⑤f¥¥⑤7

"

*
'

¥4Is
④

"
5

Ur
42

45

la
5 a

4
• I

3
•

GO Be

2 •

•
• GO

1 •

OB•BI
•

•
• • • • • >

O 1 2 3 4 5 Me

8
>>>>>>><

>>>>>>>:

x = ⇢C2(e) = [0 + 0 + 0]| {z }P
j2C2={b,c,d} P(e,j)

+ [
1

2
x +

1

4
y ]

| {z }P
j2ST={e,f } P(e,j)⇢C2 (j)

y = ⇢C2(f ) = [
1

5
+ 0 +

1

5
]

| {z }P
j2C2={b,c,d} P(f ,j)

+ [
1

5
x +

2

5
y ]

| {z }P
j2ST={e,f } P(f ,j)⇢C2 (j)

) x =
2

5
, y =

4

5
.
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Similarly, let ⇢C1(e) = x and ⇢C1(f ) = y ,

'

A

⑤⑤f¥¥⑤7

"

*
'

¥4Is
④

"
5

Ur
42

45

la
5 a

4
• I

3
•

GO Be

2 •

•
• GO

1 •

OB•BI
•

•
• • • • • >

O 1 2 3 4 5 Me

then
8
><

>:

x = [
1

4
] + [

1

2
x +

1

4
y ]

y = [0] + [
1

5
x +

2

5
y ]

=) x =
3

5
, y =

1

5
.
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Remark (i):
P
i
⇢Ci (x) ⌘ 1, x 2 ST (finite).

Indeed,P
i
⇢Ci (x) =

P
i
Px(TCi < 1) = Px(TSR < 1) = 1.

Heuristically, it is obvious:

• We totally have finite transient states.

• Each transient state is visited only finite times.

• Surely the chain from x hits a recurrent state in
finite time, so the prob = 1.
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Remark (ii): ⇢xy = ⇢C (x), x 2 ST , y 2 C .

Apply it to the previous example:

'

A

⑤⑤f¥¥⑤7

"

*
'

¥4Is
④

"
5

Ur
42

45

la
5 a

4
• I

3
•

GO Be

2 •

•
• GO

1 •

OB•BI
•

•
• • • • • >

O 1 2 3 4 5 Me

2

5
= ⇢C2={b,c ,d}(e) = ⇢eb = ⇢ec = ⇢ed ,

4

5
= ⇢C2={b,c ,d}(f ) = ⇢fb = ⇢fc = ⇢fd .
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§1.3 More examples

Examples 1: Birth & Death Chain.

• Setting:

{Xn}1n=0, S = {0, 1, · · · , d} (d : finite or 1)

P(x , y) =

8
>><

>>:

qx if y = x � 1
rx if y = x
px if y = x + 1
0 otherwise

where qx + �x + ⇢x = 1.

Pn

• km. >

A- 1 @ set 1

rn

q0 = 0; pd = 0, if d is finite.
Note: the transition probs are functions of states! 124/323



O 1 2 3 ... d- A d

0
-

r
. po

*
1 of

,
K Pn

P ==
.

2 G
.

K R

: '

\

,

\
\

,

"
'

,

d- I qd
. ,
Vdt Pd

- i

d
.

ofd rd
-

K K B K

r.at#FtfEP.. .

← ← ← ←

8
, q .

f , k
,

O 1 2 3 ... d- A d

0
-

r
. po

*
1 of

,
K Pn

P ==
.

2 G
.

K R

: '

\

,

\
\

,

"
'

,

d- I qd
. ,
Vdt Pd

- i

d
.

ofd rd
-

K K B K

r.at#FtfEP.. .

← ← ← ←

8
, q .

f , k
,
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A general question: Given a, b 2 S with a < b,
compute

u(x)
def
= Px(Ta < Tb), a < x < b,

v(x)
def
= Px(Ta > Tb), a < x < b.

the

• km. >

A- 1 @ set 1

rn

• •

••
...

• • • >

a n
b

{Ta < Tb} = Before the chain hits b, it hits a, (i.e.,
the chain hits a earlier than b)

{Ta > Tb} = Before the chain hits a, it hits b, (i.e.,
the chain hits b earlier than a)
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Claim:

(i) u(a) = 1, u(b) = 0.

(ii) u(x) = qxu(x � 1) + rxu(x) + pxu(x + 1) for
a < x < b.

(iii) u(x) =

b�1P
y=x

�y

b�1P
y=a

�y

for a < x < b.

(iv) v(x) = 1� u(x) =

x�1P
y=a

�y

b�1P
y=a

�y

for a < x < b,

where �x are defined by

�x
def

=

⇢
1 if x = 0
q1···qx
p1···px if 1  x  d � 1.
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Proof:

(i) is obvious.

(ii) follows by

Px(A) =Px(A,X1 = x � 1) + Px(A,X1 = x)

+ Px(A,X1 = x + 1)

=Px(X1 = x � 1)Px(A|X1 = x � 1)

+ Px(X1 = x)Px(A|X1 = x)

+ Px(X1 = x + 1)Px(A|X1 = x + 1)

=P(X1 = x � 1|X0 = x)P(A|X0 = x ,X1 = x � 1)

+ P(X1 = x |X0 = x)P(A|X0 = x ,X1 = x)

+ P(X1 = x + 1|X0 = x)P(A|X0 = x ,X1 = x + 1)

=qxPx�1(A) + rxPx(A) + pxPx+1(A).
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Proof of (iii):

u(x) = qxu(x � 1) + (1� px � qx)u(x) + pxu(x + 1)
(px + qx)u(x) = qxu(x � 1) + pxu(x + 1)

u(x + 1)� u(x) =
qx
px

[u(x)� u(x � 1)] (a < x < b)

=
qx · qx�1

px · px�1
[u(x � 1)� u(x � 2)]

= · · ·

=

✓
qx
px

◆✓
qx�1

px�1

◆
· · ·

✓
qa+1

pa+1

◆
[u(a+ 1)� u(a)]

=
�x

�a
[u(a+ 1)� u(a)].

Note:
b�1P
x=1

(·) ) u(b)� u(a)| {z }
=�1

=

b�1P
x=a

�x

�a
[u(a+ 1)� u(a)]

) u(x + 1)� u(x) = � �x

b�1P
x=a

�x

(a 6 x < b)

129/323



Further, change x to y ,
b�1P
y=x

)

u(b)|{z}
=0

�u(x) = �

b�1P
y=x

�y

b�1P
y=a

�y

, ) u(x) =
b�1X

y=x

�y/
b�1X

y=a

�y .

Reminder:

• u(x)
def
= Px(Ta < Tb), a < x < b.

• �x
def

=

⇢
1 if x = 0
q1···qx
p1···px if 1  x  d � 1.
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Sum:

a < x c b

" " " " "

a

•

He :#
b. n ;

>

H¥.EE?=EiirrtEiry
faster

RHIH= First
¥ir,:

Birth faster

Px( Ta < Tb| {z }
“Death faster”

) =
b�1X

y=x

�y/
b�1X

y=a

�y ,

Px( Ta > Tb| {z }
“Birth faster”

) =
x�1X

y=a

�y/
b�1X

y=a

�y .
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e.g.: Set:

• A gambler bets $1 each time.

• The prob of winning or losing each bet is 9/19
and 10/19, resp.

• The gambler will quit as soon as his net winning
is $25 or his net loss is $10.

Q.:

(i) Find the prob he quits and wins.

(ii) Find his expected loss.
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Sol.: Let

Xn
def
= the capital of the gambler at time

n = 0, 1, 2, · · ·
For simplicity, we choose

X0 = 10, S = {0, 1, · · · , 35}.
{Xn}1n=0 forms a birth & death chain on S with

Pn

man• • >

A- 1 @ set 1

rn

• •

••
...

• • • >

a n
b

y

1

Or
•
8=0%9.9119

'

•

A•
⇒

A=O 1 x.In
Ntt
3435=6

(

ocnc
35 )

�y =

✓
q

p

◆y

=

✓
10

9

◆y

, 0 6 y 6 34.
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(i) Find the prob he quits and wins: To find

P10(T35 < T0| {z }
“Birth faster”

) =

9P
y=0

�y

34P
y=0

�y

=

9P
y=0

(109 )
y

34P
y=0

(109 )
y

=
(109 )

10 � 1

(109 )
35 � 1

= 0.047.

(ii) Find his expected loss:

a < x c b

" " " " "

THE:# b. , ;
>

Pxt¥.EE?=EiirrtEiry
faster

R.tk#l=Fiamkkr
,:

Birth faster

gain loss

( +25 ) ( -10 )

0.047 I -

0.047

The expected loss is

(1� 0.047)(�10) + (0.047)(25) = �8.36.
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• We are further interested in the below situation:

Assume that S = {0, 1, 2, · · · } is infinite, and the
birth & death chain is irreducible, namely,

px > 0, 8 x > 0, and qx > 0, 8 x > 1.

Q.: When such chain is recurrent or transient?

(NOT obvious for an irreducible chain with infinite
states!)

Proposition: The chain is recurrent i↵

1X

k=0

�k = 1.
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Pf.: Since the chain is irreducible, we only need to
consider one state, namely, 0. Observe that

⇢00 = P0(T0 < 1) = r0 + p0P1(T0 < 1), (⇤)
where

⇢10 = P1(T0 < 1) = lim
n!1

P1(T0 < Tn)

= lim
n!1


1� 1

n�1P
k=0

�k

�
. (⇤⇤)

Therefore,
0 is recurrent, i.e. ⇢00 = 1
(⇤)&r0+p0=1() ⇢10 = P1(T0 < 1) = 1
(⇤⇤)()

1P
k=0

�k = 1.
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Remark: For instance, let

px ⌘ p > 0, qx ⌘ q > 0, 0 < ⇢+ q 6 1.

Then,
1X

k=0

�k =
1X

k=0

✓
q

p

◆k

.

• If p > q, then
1P
k=0

�k is finite. The chain is

transient .

• If p = q or p < q, then
1P
k=0

�k = 1. The chain

recurrent.
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Example 2. Branching chain.

Each particle generates ⇠ particles independently in
the next generation.

:• . .  - - - - - .  - - .t.q.ge#-
"

" at

I

p. . q ;r' '
.
b 7

A0 to Elon ) 1

to .
- .  - .  . .  - .  - .  -

•f.
to .  .

.  .too.
.

. .

ta .  .Khoo -
- . .a.

 

•A.
.

the
.

.

Xn
def
= the total no of particles in the nth generation

P(0, 0) = 1.

P(x , y) = P(⇠1 + ⇠2 + · · ·+ ⇠x = y), x > 1.
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Q.: Determine

⇢
def
= the prob that the descendants of a given

particle eventually become extinct.

We call ⇢ to be the extinction prob of the chain.
Then,

⇢ = ⇢10 = P1(T0 < 1).
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1st Obervation: Suppose ⇠ has the pdf

pk = P(⇠ = k), k = 0, 1, 2, · · ·

Then,

P(1, k) = P(⇠1 = k) = pk , k = 0, 1, 2, · · ·

From this we see:

• If p0 = 0, then each individual cannot change to
zero, so population never extinct, i.e. ⇢ = 0.

• If p0 = 1, then it extincts for sure, i.e., ⇢ = 1.

To avoid two trivial cases, we always assume

0 < p0 < 1.
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2nd Obervation: Assuming there are x particles,
the prob for them to extinct is

⇢x0 = ⇢x .

(Pf.: Use independence!)
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3rd Obervation: Let

µ
def
= E (⇠) =

1X

k=0

kpk =
1X

k=1

kpk .

Then, E (Xn+1|Xn = k) = E (⇠1 + · · ·+ ⇠k) = kµ,

E (Xn) =
1X

k=0

E (Xn|Xn�1 = k)P(Xn�1 = k)

=
1X

k=0

(kµ)P(xn�1 = k)

= µE (Xn�1)

= · · ·
= µnE (X0).
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Claim: If µ < 1, then population will extinct for
sure, i.e., ⇢ = 1.
Proof:
P1(T0 > n) 6 P1(Xn > 1) (*{T0>n}✓{Xn>1})

=
1X

k=1

P1(Xn = k) 6
1X

k=1

kP1(Xn = k)

=
1X

k=0

kP1(Xn = k)

= E (Xn) = µnE (X0)
n!1���! 0 (* µ < 1)

Therefore
⇢|{z}

extinction prob

= ⇢10 = P1(T0 < 1) = lim
n!1

P1(T0 6 n)

= lim
n!1

[1� P1(T0 > n)] = 1.
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What about µ > 1?

⇢ = ⇢10 = P1(T0 < 1)

= P(1, 0) +
1X

k=1

P(1, k)⇢k0

= p0 +
1X

k=1

pk⇢
k =

1X

k=0

pk⇢
k ,

i.e., ⇢ solves the equation t = �(t) with

�(t)
def
=

1X

k=0

pkt
k ,

which is called the moment generating function
of the pdf (pk)k�0 of ⇠.
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Observe:

• �0(t) > 0, �00(t) > 0, () �(t) " & concave
upward).

• �(0) = p0 2 (0, 1), �(1) =
1P
k=0

pk = 1.

• �0(1) =
1P
k=1

kpk = E (⇠) = µ.

Then, we have three cases:
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Case (i): µ < 1.

Ya

get
1 • •

p.y=oItt%
o

•

go
>

t

slope of TQAI on ioik 1

:t.im
"

y • . . .  - . .

y= # t '

Po •

• . >
0 1 t

) ⇢ = 1 (extinct for sure, as proved before)
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Case (ii): µ = 1.

Ya

get
1 • •

p.y=oItt%
o

•

go
>

t

slope of TQAI on ioik 1

:t.im
"

y • . . .  - . .

y= # t '

Po •

• . >
0 1 t

) ⇢ = 1 (extinct for sure!)
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Case (iii): µ > 1.

:
• .

.  - - - -
-

.  - -
.

t.q.ge#-

"

" at

I

p.
.

q ;r'

'

.
b

7

A0
to Elon ) 1

to
.

- .  - .  
. .  -

.  -
.  

-

•f.
to .  

.

.  .

too
.

.
. .

ta .  
.Khoo 

-

-
.

.a.
 

•A.
.

the
.

.

�(t) = t at t = t0 2 (0, 1) or t = 1.

Claim: In this case, P1(T0 6 n) 6 t0 for all
n = 1, 2, · · · (proved later).

) ⇢ = ⇢10 = P1(T0 < 1)

= lim
n!1

P1(T0 6 n) 6 t0

) ⇢ = t0 is the only solution.
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Proof of Claim: Use induction. Set

an
def
= P1(T0 6 n).

n = 0: a0 = P1(T0 6 0) = 0 < t0.

Assuming an 6 t0(n > 0), consider

an+1 = P1(T0 6 n + 1)

= P(1, 0)| {z }
=p0

+
1X

k=1

P(1, k)| {z }
pk

Pk(T0 6 n)| {z }
=[P1(T06n)]k=akn

=
1X

k=0

pka
k
n

= �(an) 6 �(t0) = t0 (� is nondecreasing).
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e.g.: Every man has 3 kids with prob 1/2 being boy
and 1/2 being girl. Find the prob that the male live
eventually extinct.

Sol.: p0 = P(⇠ = 0) = 1
8 , p1 = P(⇠ = 1) = 3

8 ,
p2 = P(⇠ = 2) = 3

8 , p3 = P(⇠ = 3) = 1
8 .

E (⇠) = 0 · 1
8
+ 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8
=

3

2
> 1

�(t) =
1

8
+

3

8
t +

3

8
t2 +

1

8
t3

let �(t) = t, i.e. t =
1

8
+

3

8
t +

3

8
t2 +

1

8
t3

Solutions: t = 1,
p
5� 2. Then

⇢ =
p
5� 2

is the extinct prob. 150/323



Example 3. Queuing chain.
Setting:
• In a queue, let ⇠n denote the no of arrivals in the
n-th unit time. {⇠n}1n=1 are i.i.d.r.v. with pdf:

f (k) = pk , k = 0, 1, 2, · · ·

• The service of a customer is exactly one in a
unit time.

Let Xn denote the no of customers in the queue.

P(x , y) = f (y � (x � 1)| {z }
no of arrivals

), x > 1,

P(0, y) = f (y).

Note: P(1, y) = P(0, y).
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Q.: Assuming that the chain is irreducible, check if
the chain is recurrent or transient, i.e. letting

⇢ = ⇢00 = P0(T0 < 1),

decide

if ⇢ = 1 or ⇢ < 1.

Note. If
p0 > 0 & p0 + p1 < 1,

then the chain is irreducible. (Ex. 37 on Page 46).
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Let

�(t)
def
= p0 + p1t + p2t

2 + · · ·

=
1X

k=0

pkt
k

=
1X

k=0

f (k)tk

be the moment generating function of f .

Claim: ⇢ = ⇢00 solves �(t) = t.
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Pf.:

• Note

⇢00 = P(0, 0) +
1X

k=1

P(0, k)⇢k0,

⇢10 = P(1, 0) +
1X

k=1

P(1, k)⇢k0,

P(1, k) = P(0, k), 8k � 0.

Therefore,
⇢10 = ⇢00 = ⇢.

154/323



• To show: ⇢x ,x�1 = ⇢10 = ⇢ for all x > 1.

In fact, we observe that
for the chain starting at x > 1 () x � 1 � 1),
the event Tx�1 = n means

n = min{m > 0 : x+(⇠1�1)+ · · · (⇠m�1) = x�1},

i.e.

n = min{m > 0 : 1 + (⇠1 � 1) + · · · (⇠m � 1) = 0}.

Therefore, Px(Tx�1 = n) = P1(T0 = n), 8n � 1.

) ⇢x ,x�1 = ⇢10 = ⇢.
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• To show:

⇢x ,0 = ⇢x ,x�1 · ⇢x�1,0, 8 x > 2. (⇤)

(Ex. 39, P46). If so, then

⇢x ,0 = ⇢⇢x�1,0 = · · · = ⇢x ,

(also true for x = 1), and hence

⇢ = ⇢00 = P(0, 0) +
1X

k=1

P(0, k)⇢k0

= p0 +
1X

k=1

pk⇢
k

= �(⇢).
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Proof of (⇤): Let x � 2. Note that for m � 2,

Px(T0 = m) =
m�1X

`=1

Px(Tx�1 = `)Px�1(T0 = m � `).

Then,

⇢x,0 = Px(T0 < 1) =
1X

m=1

Px(T0 = m)

=
1X

m=2

Px(T0 = m) (Note: Px(T0 = 1) = 0 for x � 2)

=
1X

m=2

m�1X

`=1

Px(Tx�1 = `)Px�1(T0 = m � `)

=
1X

`=1

1X

m=`+1

Px(Tx�1 = `)Px�1(T0 = m � `) (see later)

=
1X

`=1

Px(Tx�1 = `)⇢x�1,0

= ⇢x,x�1⇢x�1,0.
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Note:
1X

m=2

m�1X

`=1

=
1X

`=1

1X

m=`+1

.
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Sum: Let µ = E (⇠). Then

• If µ 6 1, then �(⇢) = ⇢ has the only solution
⇢ = 1. The chain is recurrent.

• If µ > 1, then �(⇢) = ⇢ has two solutions 1 and
t0 2 (0, 1). As in the previous example, one has
to take ⇢ = t0. The chain is transient.
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