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Chapter III Markov Jump Process

1 Introduction to Markov jump process

• From now on we consider the continuous-time stochastic process.

• Jump process: It is a continuous-time stochastic process {Xt}t≥0 taking values in a
countable set S. A sample path of Xt is described as follows:

- Let X0 = x0 ∈ S. It stays at x0 until time τ1 > 0 and jump to another state
x1( 6= x0) ∈ S. Assume τ1 is finite.

- Repeat the previous procedure in a similar way: it stays at x1 until time τ2(> τ1)
and jump to another state x2(6= x1) ∈ S. Assume τ2 is finite.

- · · ·

We also assume limn→∞ τn =∞ (No blow up). Example: The model for customer arrival.

• Probability structure: A state x is absorbing if once it is reached the process remains
there forever. For a non-absorbing state x, we need two things

- Fx(t) to describe the distribution of the waiting time τ1 to jump

- Qxy to describe the transition probability to jump from x to y( 6= x):

Qxx = 0,
∑
y

Qxy = 1. (1)

We also assume that “τ1 (the waiting time to jump)” and “Xτ1 (where to jump)” are
independent:

Px(τ1 ≤ t,Xτ1 = y) = Fx(t)Qxy. (2)

Then, the continuous-time jump process with such probability structure is described by

Pxy(t) := Px(Xt = y), (3)

that is the probability that the process starting in state x will be in state y at time t ≥ 0.
Pxy(t) is called the transition function.

• Markov property:

P
(
Xt = y|Xs1 = x1, · · ·Xsn = xn, Xs = x

)
= P (Xt = y|Xs = x), (4)



for all 0 ≤ s1 ≤ · · · ≤ sx ≤ s ≤ t and for all states x1, · · · , xn, x, y.
In this course we always assume that the process is time-homogeneous, meaning

that for any 0 ≤ s < t,

P (Xt = y|Xs = x) = P (Xt−s = y|X0 = x) = Px(Xt−s = y). (5)

A Markov jump process (MJP) means a continuous-time jump process satisfying
the above Markov property. Note that it is NOT obvious that such MJP exists. We will
first look at it by the Poisson process (Model: customer arrival), and more examples of
MJPs will be provided later on.

From now on, we always consider the MJP which is time-homogeneous.

• Considering a non-absorbing state x, the waiting to jump τ1 turns out to be an expo-
nential r.v. Indeed,

(a) One can show that for X0 = x, the r.v.

τx := inf{t > 0 : Xt 6= x} (6)

(the first time to jump) is memoryless, meaning

P (τx > s+ t|τx > s) = P (τx > t), ∀ s, t ≥ 0. (7)

(Think about the model of waiting for an unreliable bus driver: If we have been
waiting for s units of time then the probability we must wait for t more units of time
is the same as if we have not waited at all!) See the lecture for the proof (Use the
Markov property).

(b) One can further show that any memoryless r.v. must be exponential; see the lecture
for the proof. For instance, for τx,

P (τx > t) = e−qxt, qx =
1

E(τx)
. (8)

Here qx(> 0) represents the rate leaving x. Thus, the density function of τ1 is
qxe
−qxt, and

Fx(t) = Px(τx ≤ t) = 1− e−qxt. (9)

2 Poisson process

• There are several ways to define the Poisson process. Here, we would use the waiting
time to do it.

• The PP is introduced as follows:
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(a) We start from ξn(∼ ξ), n = 1, 2, · · · , which are i.i.d. exp. r.v. with parameter
λ > 0:

P (ξ > t) = e−λt, λ =
1

E(ξ)
, (10)

where ξ is regarded as the waiting time for the next arrival, and λ is under-
stood to be the arrival rate.

(b) Then, we define
τn := ξ1 + · · ·+ ξn, n = 1, 2, · · · , (11)

and τ0 := 0. τn is regarded as the time for the nth arrival.

(c) Now, for t ≥ 0, we define

Xt := max{n ≥ 0 : τn ≤ t}, (12)

regarded as the NO of arrivals in [0, t]. Note X0 = 0, i.e., no arrival at initial
time.

• From the construction of {Xt}t≥0, one can show that for any given t > 0, Xt has Poisson
distribution with mean λt:

P (Xt = n) = e−λt
(λt)n

n!
, n = 0, 1, 2, · · · . (13)

Recall that
E(Xt) = λt

is the expected number of arrivals in [0, t], and hence λ = λt
t−0 means the arrival rate. The

proof of (13) is based on the identity

{Xt = n} = {τn ≤ t < τn+1}; (14)

see the lecture for additional details.

• One can further conclude:

(i) X0 = 0.

(ii) For 0 < s < t, Xt−Xs has Poisson distribution with mean λ(t−s) and is independent
of Xs.

(iii) For any increment 0 ≤ t1 < · · · < tn, Xt2 −Xt1 , · · · , Xtn −Xtn−1 are independent.

These three properties are also often used as the definition of Poisson process.

• Moreover, one can show that {Xt}t≥0 satisfies the Markov and time-homogenous prop-
erty, and hence is a MJP, usually called the Poisson process.
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3 Basic properties of Markov jump process

• Consider a general MJP {Xt}t≥0 with countable state space S. Recall Pxy(t) = P (Xt =
y|X0 = x). In general it is convenient to write it as the matrix form

P (t) = [Pxy(t)]. (15)

• One can show

P (t+ s) = P (t)P (s), (16)

that is,

Pxy(t+ s) =
∑
z∈S

Pxz(t)Pzy(s). (17)

This is the so-called Chapman-Kolmogorov equation.

• Recall the probability structure of MJP introduced before. We expect to bridge a rela-
tion between P (t) and qx (the leaving rate; the parameter of the exponential distribution
for the waiting time to jump away from x) as well as Qxy (the probability for where to
jump).

Heuristically (of course it can be made rigorous; see the lecture for detailed proof),
one has

(a) P (t) is differentiable. Set D := P ′(0), and denote D = [qxy]. D is called the rate
matrix. For D, one is able to show∑

y

qxy = 0 (row sum is zero), (18)

qxx = −qx ≤ 0 (the rate to jump away from x), (19)

and

qxy ≥ 0 for y 6= x (the rate to jump away from x to being in y). (20)

Note ∑
y 6=x

qxy = −qxx = qx, (21)

or if qx 6= 0 (thus > 0), ∑
y 6=x

qxy
qx

= 1. (22)

Hence, qxy/qx is understood to be the probability that the process jumps to y from
x.
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(b) Recall Q = [Qxy] is the Markov matrix associated with the process. One is able to
show

Qxy =


qxy
qx

if x 6= y and qx 6= 0,

0 otherwise.

(23)

From these properties, we see it is more convenient to first have D so as to have qx
(equivalently Fx(t)) and Q and then derive P (t). See the lecture for examples.

• Assuming P (t) is differentiable, it follows from the Chapman-Kolmogorov equation that

P ′(t) = P (t)D forward equation, (24)

P ′(t) = DP (t) backward equation. (25)

Note P (0) = I, i.e., Pxy(0) = δxy. The solution to the forward equation is formally
written as

P (t) = etD :=
∞∑
n=0

(tD)n

n!
. (26)

To find the p.d.f. of Xt, set

py(t) := P (Xt = y), or ~p(t) = [py(t)]y∈S in the vector form. (27)

Similar to what we showed in the discrete-time Markov chain,

~p(t) = ~p(0)P (t), (28)

so that
~p(t) = ~p(0)etD, (29)

• Assume that S is finite and D = G diag(λ1, λ2, · · · , λn)G−1, where λi are the eigenvalues
of D and G = [~e1, ~e2, · · · , ~en] with ~ei being the (column) eigenvectors associated with λi.
Then,

P (t) = etD = Gdiag (eλ1t, · · · , eλnt)G−1. (30)

This is a convenient way for finding P (t) instead of directly solving ODEs.

4 Important examples: Birth and death processes

• The Poisson process defined before is a special pure-birth (with a constant birth rate)
process. You need to know how to compute P (t) in terms of a pure-birth process; see the
lecture.

• Branching process: Each particle waits to either split into two particles with prob-
ability p or vanish with probability 1 − p. The waiting time is an exponential r.v. with
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rate λ. Set up the model to describe the number of particles at time t, and find the rate
matrix. What if we allow new particles to immigrate into the system at a rate α?

• Queuing model: The knowns are the arrival rate λ (arrivals are Poisson) and the
service rate µ (exponential r.v.). Note that the arrival and service are independent. Set
up the model in terms of the number of servers to describe the number of persons waiting
for service at time t: M/M/k (k = 1, 2, · · · ) and M/M/∞.

5 Limiting properties

• ~π is a stationary distribution if (i) ~π is a probability vector, and (ii) ~π is stationary,
i.e. ~πP (t) = ~π or equivalently∑

x∈S

π(x)Pxy(t) = π(y), ∀ y, ∀ t. (31)

One can show that ~π is a stationary distribution if and only if ~π is a probability vector
and satisfies

~πD = 0, (32)

where D = P ′(0) is the rate matrix. Apply this to a general birth and death process,
particularly, queue models, to check the condition that the process has a stationary dis-
tribution.

• Recurrence/transience: Define Zn = Xτn , n = 0, 1, 2 · · · with τ0 := 0, where τn
means the time for the nth jump. Given a general Markov jump process introduced
before, one can show that {Zn}n≥0 is a discrete-time Markov chain with Q as transition
matrix. To check recurrence/transience, it suffices to only consider Q. Similarly, A MJP
is irreducible if ρxy > 0 for all x, y. Apply this to a general birth and death process to
check the condition that the process is recurrent or not, and irreducible or not.

• Mean return time and relation with the stationary distribution: As introduced in
the past chapter, mx := Ex(Tx) stands for the mean return time. A recurrent state x
is positive recurrent if mx < ∞; null recurrent if mx = ∞. One can show that an
irreducible positive recurrent MJP must admit a unique stationary distribution ~π, which,
unless S consists of a single necessarily absorbing state, is given by

π(x) =
1

qxmx

, x ∈ S. (33)

• Long-term behavior of the process: For an irreducible MJP, P (t) (as a Markov matrix)
is always aperiodic for any given t > 0. For an irreducible positive recurrent MJP having
stationary distribution ~π, we have

lim
t→∞

Pxy(t) = π(y), ∀x, y ∈ S. (34)

——The End, Updated on April 17——
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