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Chapter II Stationary Distributions

1 SD and its computations

• Recall that for a MC {Xn}∞n=0,

~πn+1 = ~πnP, ~πn = ~π0P
n, n = 0, 1, 2, · · · (1)

where ~πn, n ≥ 0, denote the p.d.f. of Xn.

• Consider a MC with P and S (for instance, S = {0, 1, 2, · · · , N} with N finite or
infinite). ~π := [π(0), π(1), · · · , π(N)], or denoted by π(x), x ∈ S, is called a stationary
distribution for P if

(i) ~π is a distribution, i.e., π(x) ≥ 0, ∀x ∈ S, and
∑

x∈S π(x) = 1.

(ii) ~π is stationary: ~πP = ~π, i.e.,∑
x∈S

π(x)P (x, y) = π(y), ∀ y ∈ S. (2)

Here, (ii) means that if the chain starts from the distribution ~π, then all Xn, n ≥ 1 have
the same distributions as ~π.

• We have to notice:

(a) Given an initial distribution ~π0, if the limit distribution exists, i.e., limn→∞ ~π0P
n

exists, denoted by ~π, then ~π satisfies

~π =
(

lim
n→∞

~π0P
n−1
)
· P = ~πP, (3)

i.e., the limit distribution ~π is stationary and hence ~π is a SD. Moreover, if ~π = ~πP
has a unique distribution solution then the limit distribution is independent of the
initial distribution.

(b) If

lim
n→∞

P n =


~π
~π
...
~π

 (4)



for some distribution ~π, then the limit distribution exists and is independent of
the initial distribution. We will discuss the long-term behavior of P n in the last
subsection.

• In case S is finite, we have some general conditions to assure the existence and unique-
ness. In fact, let P be a Markov matrix with finite state space S. Assume

(i) the left 1-eigenvector (which must exist; why?) can be chosen to have all nonnegative
entries.

(ii) 1 is a simple eigenvalue.

(iii) all other eigenvalues: |λi| < 1.

Then P has a unique SD ~π, and (4) holds true. In particular, if for some n, P n has all
entries strictly positive, then three conditions above can be satisfied and the conclusion
is true for the chain.

In the future lecture, we will show that an irreducible MC with finite state space must
have a unique SD (but (4) may NOT hold true!).

• In the general situation that S is finite or infinite, we will discuss the existence and
uniqueness of SD later on.

• Computation issues on SD, as well as the limit of P n if it exists:

– In case S is finite and P is irreducible, apply Row Operators to P T − I to get the
upper diagonal form.

– In case S is finite and P is reducible, apply the State Decomposition, for instance,
S = C1 ∪ C2 ∪ ST , re-write P as the canonical form, and then try to find the limit
of P n as n→∞, if it exists. See the tutorial and exercises for examples.

– In case S is infinite, see the lectures for two additional examples:

(a) Find SD of an irreducible birth and death chain.

(b) Find SD of a telephone exchange model with new calls satisfying the Poisson
distribution (or a general queuing chain model with the service given by the
rule that each person at the beginning of a unit time has the probability q to
be served and leave the waiting line by the end of the unit time).

2 Average number of visits

• Given a MC with S and P , let Nn(y) be the NO of visits to y in n-steps (i.e., during
times m = 1, 2, · · · , n). We are interested in determining

Nn(y)

n
,

Ex(Nn(y))

n
, as n→∞. (5)
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Note:

(i) Nn(y)
n

is a r.v., denoting the proportion of the first n units of time that the

chain visits y, and the limit of Nn(y)
n

as n→∞ (if exists) means the average NO
of visits to y (per unit time) or the frequency that the chain visits y. We can
compute Nn(y) as

Nn(y) =
n∑

m=1

1y(Xm). (6)

(ii) Ex(Nn(y))
n

is the expected value of Nn(y)
n

for a chain starting from x, and hence
its limit value (if exists) means the expected average NO of visits to y (per
unit time) or the expected frequency that the chain visits y. We can compute
Ex(Nn(y)) as

Ex(Nn(y)) =
n∑

m=1

Pm(x, y). (7)

Thus, to determine limn→∞
Ex(Nn(y))

n
is equivalent to determine

lim
n→∞

∑n
m=1 P

m(x, y)

n
. (8)

Note that it could occur that the above limit exists but limn→∞ P
n(x, y) may not

exist!

• In case y is transient, it is direct to see

lim
n→∞

Nn(y) = N(y) <∞ with prob 1, lim
n→∞

Ex(Nn(y)) =
ρxy

1− ρyy
<∞, (9)

and hence

lim
n→∞

Nn(y)

n
= 0 with prob 1, lim

n→∞

Ex(Nn(y))

n
= 0. (10)

This means that in the long run, the average NO of visits to a transient state is zero, and
its expected value is also zero.

• In case y is recurrent, we can show the following result. For simplicity we consider an
irreducible recurrent MC only. Then, for any y ∈ S,

lim
n→∞

Nn(y)

n
=

1

my

with prob 1, lim
n→∞

Ex(Nn(y))

n
=

1

my

, x ∈ S, (11)

where my := Ey(Ty) denotes the mean return time to y for a chain starting from
y. my can be understood to be the mean waiting time. Thus, two limits mean that
the visit frequency and the waiting time are reciprocal to each other!!! It is heuristically
obvious; see the lectures for the rigorous proof.
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3 Waiting time and existence of stationary distribu-

tion

• 0 < mx := Ex(Tx) 5 ∞ for a recurrent state x. Note: If x is recurrent, then Px(Tx =
∞) = 0 and Px(Tx < ∞) = 1, so there is k0 ≥ 1 such that Px(Tx = k0) > 0, hence
mx = Ex(Tx) =

∑∞
k=1 kPx(Tx = k) ≥ k0Px(Tx = k0) > 0.

• A recurrent state x is called positive recurrent if (0 <)mx <∞, and null recurrent
if mx =∞. Thus, a positive recurrent state comes back in finite waiting time, and a null
recurrent state comes back very rarely.

•We can also discuss communications between positive recurrent states. In fact, one can
prove that if a positive recurrent state x leads to y then y is also a positive recurrent state.

Recall that an irreducible MC with finite state space is recurrent. One can further
show that an irreducible MC with finite state space does not admit any null recurrent
state, and hence it is positive recurrent.

Recall that given S and P , we have the state decomposition

S = SR ∪ ST = (∪ki=1Ci) ∪ ST , (12)

where k can be finite or infinite. Then, for each i, Ci is either positive recurrent or null
recurrent. Moreover, if Ci is finite, then Ci must be positive recurrent.

• The waiting time mx of a recurrent state x, or the frequency 1/mx of the chain visiting
x, would be connected with the stationary solution of the chain. In fact, one can show
that an irreducible positive recurrent MC has a unique stationary distribution ~π, given by

π(x) =
1

mx

∈ (0, 1), x ∈ S. (13)

Notice that the theorem gives us a way to find the value of waiting time mx of any state
x. Here are a few immediate consequences:

(a) An irreducible MC with finite state space has a unique SD ~π with π(x) = 1/mx,
x ∈ S.

(b) We may further show that if an irreducible chain has no positive recurrent state
(i.e., any state is either null recurrent or transient), then the chain has NO SD.
Therefore, for an irreducible MC, it has a SD if and only if it is positive recurrent.
Exercise: Apply it to determine if an irreducible birth and death chain is either
positive recurrent, or null recurrent, or transient.

(c) Let C be an irreducible closed set of positive recurrent states. Then, the chain has
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a unique SD ~π concentrated on C:

π(x) =


1

mx

if x ∈ C,

0 otherwise.

(14)

4 Periodicity

• Recall that it could occur that the chain admits a SD but limP n does not exist (hence
the long-term behavior of the chain seems unclear!). For instance,

P =

(
0 1
1 0

)
. (15)

The SD exists, given by ~π = [1/2, 1/2]. For such P you can compute

P 2m =

(
1 0
0 1

)
, P 2m+1 =

(
0 1
1 0

)
. (16)

Thus, limP n does not exist, but you can still determine the long-term behavior of the
chain in the following way

lim
m→∞

P 2m =

(
1 0
0 1

)
, lim

m→∞
P 2m+1 =

(
0 1
1 0

)
. (17)

We can discuss such property by using the periodicity of the chain.

• The period dx of a state x ∈ S is defined by

dx = g.c.d. {n ≥ 1 : P n(x, x) > 0}. (18)

Note that dx is a positive integer with 1 ≤ dx ≤ min{n ≥ 1 : P n(x, x) > 0}. If P (x, x) > 0
then dx = 1.

For the chain with P given by (15),

{n ≥ 1 : P n(0, 0) > 0} = {2, 4, 6, · · · } = {n ≥ 1 : P n(1, 1) > 0}. (19)

Thus,
d0 = d1 = 2. (20)

• For an irreducible MC, all states have the same period d ≥ 1 (see the lecture for the
proof), and the chain is called periodic with period d ≥ 1. If d = 1, the chain is said to
be aperiodic.

• We can make connection between the long-term behavior of P n(x, y) and SD ~π in
the following way (the proof was omitted in the lecture; please refer to the textbook).
Consider an irreducible positive recurrent MC. We know such chain must have a SD,
denoted by ~π. Then, we have
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(a) if the chain is aperiodic, then

lim
n→∞

P n(x, y) = π(y), (21)

for any x, y ∈ S.

(b) if the chain the periodic with period d ≥ 2, then for any x, y ∈ S, there exists an
integer

r ∈ {0, 1, 2, · · · , d− 1},

generally depending on x, y, such that

P n(x, y) = 0 (22)

for all n except that n = md+ r (m ≥ 0 is an integer) for which

lim
m→∞

Pmd+r(x, y) = dπ(y). (23)

This result tells that in case d ≥ 2, we are able to determine the limits of subsequences

Pmd, Pmd+1, · · · , Pmd+(d−1) (24)

as m→∞. Precisely, for any given x, y,

Pmd(x, y), Pmd+1(x, y), · · · , Pmd+(d−1)(x, y) (25)

are zeros except that exactly one of them tends to dπ(y) as m→∞.

——End of Chapter 2, Updated on March 18——
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