THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH4240 - Stochastic Processes - 2023/24 Term 2
 Chapter 0 Review on Probability

I. Probability Space. A probability space is a triple (Ω, \mathcal{F}, P).

- Ω is a set called the sample space. An element $\omega \in \Omega$ is called an outcome.
- \mathcal{F} is a nonempty set of subsets of Ω, called the event space (whose elements called events), such that
(a) $\Omega \in \mathcal{F}$.
(b) If $A \in \mathcal{F}$ then $A^{c} \in \mathcal{F}$.
(c) If $A_{i} \in \mathcal{F}, i=1,2, \cdots$, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.

A collection of subsets with these three properties is called a σ-algebra or σ-field.

- $P: \mathcal{F} \rightarrow[0,1]$ is called the probability measure over the event space \mathcal{F}, satisfying
(a) $P(\Omega)=1$.
(b) $0 \leq P(A) \leq 1, \forall A \in \mathcal{F}$.
(c) $P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right), \forall\left\{A_{i}\right\}_{i=1}^{n}$ (n can be finite or infinite) which is disjoint.

Conditional probability: Let A, B be two events. The probability that B happens given that A occurs is denoted by

$$
\begin{equation*}
P(B \mid A):=\frac{P(A \cap B)}{P(A)} \quad \text { for } P(A) \neq 0 \tag{1}
\end{equation*}
$$

A and B are independent if $P(B \mid A)=P(B)$, i.e.

$$
\begin{equation*}
P(A \cap B)=P(A) P(B) \tag{2}
\end{equation*}
$$

Let A be fixed, $P_{A}(\cdot):=P(\cdot \mid A)$ is called the conditional probability measure.
For any event B, to compute $P(B)$, we may first find all possible events that cause B, for instance, Ω is the union of disjoint events A_{1}, \cdots, A_{n} and under this disjoint decomposition we also know how to compute $P\left(B \mid A_{i}\right)$ and $P\left(A_{i}\right)$ for each i. Then

$$
\begin{equation*}
P(B)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right) . \tag{3}
\end{equation*}
$$

Moreover, we can also compute the probability of each cause event A_{i} subject to the caused event B in the way that

$$
\begin{equation*}
P\left(A_{i} \mid B\right)=\frac{P\left(A_{i} \cap B\right)}{P(B)}=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)} \tag{4}
\end{equation*}
$$

This is the so-called Bayes' formula.
II. Random Variables and Distributions. A random variable (r.v.) X on (Ω, \mathcal{F}, P) is a function from Ω to \mathbb{R}, that is to assign each outcome with a real value. X is called a discrete r.v. if the range of X is a discrete set. X is called a continuous r.v. if the range of X is an interval of \mathbb{R}, for instance.
Discrete r.v.: Assume that the range of X is given by $S=\{k\}_{k=0}^{N}$ (N can be finite or infinite). S is called the state space.

$$
\begin{equation*}
p_{k}=P(X=k), \quad k=0,1, \cdots, N, \tag{5}
\end{equation*}
$$

is called the probability density function (p.d.f.) of X. Here $X=k$ means the event

$$
\begin{equation*}
\{X=k\}=\{\omega \in \Omega: X(\omega)=k\} \in \mathcal{F} \tag{6}
\end{equation*}
$$

Note

$$
\begin{equation*}
0 \leq p_{k} \leq 1, \quad \sum_{k \in S} p_{k}=1 \tag{7}
\end{equation*}
$$

The following examples are important:
(a) Binomial r.v.: It means a r.v. X having the p.d.f.:

$$
\begin{equation*}
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad 0 \leq k \leq n \tag{8}
\end{equation*}
$$

For instance, we perform n independent trials. At each trial, the success probability is p and the failure probability is $1-p$. Let X be the number of successes in n trials. Then, X is a binomial r.v. given as above.
(b) Poisson r.v.: It means a r.v. X having the p.d.f.:

$$
\begin{equation*}
P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \cdots \tag{9}
\end{equation*}
$$

where $\lambda>0$ is called the rate parameter. There are many models obeying the Poisson distribution. A general model is given as follows. An event can occur 0, 1, $2, \cdots$ times in an interval. The average number of events in an interval is designated $\lambda>0$. Let X be the NO of events observed in an interval. Then, X is a Poisson r.v. given as above. For instance, X may denote the NO of arrivals in a unit time with $\lambda>0$ meaning the rate of arrivals. Note that given $\lambda>0$, by letting $n \rightarrow \infty$ with $n p=\lambda$, the binomial distribution converges to the Poisson distribution, i.e.

$$
\begin{equation*}
\lim _{n \rightarrow \infty, n p=\lambda>0}\binom{n}{k} p^{k}(1-p)^{n-k}=e^{-\lambda} \frac{\lambda^{k}}{k!} \tag{10}
\end{equation*}
$$

for each $k=0,1,2, \cdots$.

Continuous r.v.: Assume that there is a nonnegative function $f(\cdot)$ such that

$$
\begin{equation*}
P(a \leq X \leq b)=\int_{a}^{b} f(t) d t, \quad-\infty<a<b<\infty \tag{11}
\end{equation*}
$$

Then, X is a continuous r.v. and f is called the p.d.f. of X. Here $a \leq X \leq b$ means the event $\{a \leq X \leq b\}=\{\omega \in \Omega: a \leq X(\omega) \leq b\}$. Note

$$
\begin{equation*}
f(x) \geq 0, \quad \int_{-\infty}^{\infty} f(x) d x=1 . \tag{12}
\end{equation*}
$$

The following are important examples:
(a) Uniform p.d.f.:

$$
f(x)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq x \leq b \tag{13}\\ 0 & \text { otherwise }\end{cases}
$$

(b) Exponential p.d.f.:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \tag{14}\\ 0 & \text { otherwise }\end{cases}
$$

(c) Normal p.d.f.:

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}:=N\left(\mu, \sigma^{2}\right) . \tag{15}
\end{equation*}
$$

See below for the meaning of μ and $\sigma>0 . N(0,1)$ is called the standard normal distribution.
III. Expectation and Variance. The expectation (or mean) of X is defined by

$$
\begin{equation*}
\mu=E(X):=\sum_{k \in S} k p_{k} \quad \text { or } \quad \int_{-\infty}^{\infty} x f(x) d x \tag{16}
\end{equation*}
$$

The 2 nd moment of X is defined by

$$
\begin{equation*}
E\left(X^{2}\right):=\sum_{k \in S} k^{2} p_{k} \quad \text { or } \quad \int_{-\infty}^{\infty} x^{2} f(x) d x \tag{17}
\end{equation*}
$$

The variance of X is defined by

$$
\begin{equation*}
\sigma^{2}=\operatorname{Var}(X):=E(X-\mu)^{2}=E\left(X^{2}\right)-\mu^{2} \tag{18}
\end{equation*}
$$

Conditional Expectation: In the discrete case, suppose that (X, Y) has a joint p.d.f.:

$$
\begin{equation*}
p\left(x_{i}, y_{j}\right)=P\left(X=x_{i}, Y=y_{j}\right) \tag{19}
\end{equation*}
$$

Then,

$$
\begin{equation*}
E\left(Y \mid X=x_{i}\right)=\sum_{j} y_{j} P\left(Y=y_{j} \mid X=x_{i}\right)=\sum_{j} y_{j} \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right)} \tag{20}
\end{equation*}
$$

where $p\left(x_{i}\right):=\sum_{j} p\left(x_{i}, y_{j}\right)$ is the p.d.f. of X. Therefore, fixing Y, we may regard $E(Y \mid X)$ as a r.v. with the p.d.f. given above. In the continuous case, suppose that (X, Y) has a joint p.d.f. $f(x, y)$ such that

$$
\begin{equation*}
P(X \leq x, Y \leq y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d v d u \tag{21}
\end{equation*}
$$

Then,

$$
\begin{equation*}
E(Y \mid X=x)=\int_{-\infty}^{\infty} y \frac{f(x, y)}{f(x)} d y \tag{22}
\end{equation*}
$$

where $f(x)=\int_{-\infty}^{\infty} f(x, y) d y$ is the p.d.f. of X. Similar to the discrete case, fixing Y, $E(Y \mid X)$ can be regarded as a continuous r.v. with the p.d.f. given above.
IV. Sequence of r.v.'s By repeating a random experiment at time $n=0,1, \cdots$ independently, we obtain a sequence of independent and identically distributed (i.i.d.) r.v. $\left\{X_{n}\right\}_{n=0}^{\infty}$. To describe $\left\{X_{n}\right\}_{n=0}^{\infty}$, we have the following two basic theorems in probability:

- Law of Large Numbers: Assume $\mu=E\left(X_{n}\right)$ for each n. The weak law of large numbers says that for any $\epsilon>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left|\frac{X_{0}+\cdots+X_{n-1}}{n}-\mu\right| \geq \epsilon\right)=0 \tag{23}
\end{equation*}
$$

The strong law of large numbers says that

$$
\begin{equation*}
P\left(\lim _{n \rightarrow \infty} \frac{X_{0}+\cdots+X_{n-1}}{n}=\mu\right)=1 \tag{24}
\end{equation*}
$$

- Central Limit Theorem: Assume $\mu=E\left(X_{n}\right)$ and $\sigma^{2}=\operatorname{Var}\left(X_{n}\right)$ for each n. The central limit theorem says that the p.d.f. of

$$
\begin{equation*}
\frac{X_{0}+\cdots+X_{n-1}-n \mu}{\sigma \sqrt{n}} \tag{25}
\end{equation*}
$$

tends to the standard normal p.d.f. $N(0,1)$ as $n \rightarrow \infty$.
However, in many cases $\left\{X_{n}\right\}_{n=0}^{\infty}$ may not be independent, and indeed there exists a sort of dependence relation. In general, $\left\{X_{n}\right\}_{n=0}^{\infty}$ is called a (discrete) stochastic process and $\left\{X_{t}\right\}_{t \geq 0}$ is called a continuous stochastic process. The goal of this elementary course is to consider the "Markov" process (to be defined) in the discrete and continuous time.
——End, updated on Jan 10th—_

