Solution 9

1. It suffices to show that

$$
\left(\nabla_{g} i\left(x^{*}\right), x-x^{*}\right\rangle \leq 0
$$

for all i such that $g_{i}\left(x^{*}\right)=0$. Fix such an i. Define $h(t)=g_{i}\left((1-t) x^{*}+t x\right)$. Then $h(0)=0$ and $h^{\prime}(0)=\left\langle\nabla g_{i}\left(x^{*}\right), x-x^{*}\right\rangle$. Since $g_{i}(y) \leq 0$ for all feasible y, we have $h(t) \leq 0$ for all $t \in[0,1]$, so $h^{\prime}(0) \leq 0$.
2. (a) The feasible region is a nonempty compact set and the objective function is continuous, so an optimal solution exists.
(b)

$$
\begin{aligned}
-[2,3,2]-\lambda[1,1,1]+\mu[2 x, 2 y, 2 z] & =[0,0,0] \\
x+y+z & \geq 0 \\
x^{2}+y^{2}+z^{2} & =1 \\
\lambda & \geq 0 \\
\lambda(x+y+z) & =0
\end{aligned}
$$

(c) By KKT, $\mu \neq 0$ and

$$
[x, y, z]=\frac{1}{2 \mu}[\lambda+2, \lambda+3, \lambda+2]
$$

Again by KKT, we have $\mu>0$. If $\lambda=0$,

$$
\begin{aligned}
\mu & =\sqrt{1^{2}+\frac{3^{2}}{2^{2}}+1^{2}} \\
{[x, y, z] } & =\frac{1}{\sqrt{17}}[2,3,2] \\
2 x+3 y+2 z & =\sqrt{17}
\end{aligned}
$$

If $\lambda \neq 0$, then $x+y+z=0$, so

$$
\begin{aligned}
3 \lambda+7 & =2 \mu \\
3 \lambda^{2}+14 \lambda+17 & =4 \mu^{2}
\end{aligned}
$$

which implies $\lambda=-2$ or $\lambda=-\frac{5}{3}$, a contradiction. Thus,

$$
\left(\lambda^{*}, \mu^{*}, x^{*}, y^{*}, z^{*}\right)=\left(0, \frac{\sqrt{17}}{2}, \frac{2}{\sqrt{17}}, \frac{3}{\sqrt{17}}, \frac{2}{\sqrt{17}}\right)
$$

3. (a)

$$
\begin{array}{r}
2 A x+2 \mu x=0 \\
\|x\|^{2}=1
\end{array}
$$

(b) Suppose x minimizes $\langle x, A x\rangle$ on $\|x\|^{2}=1$. Then x necessarily satisfies KKT. In particular, x is a nonzero vector such that $(A+\mu I) x=0$ for some $\mu \in \mathbb{R}$, so x is an eigenvector of A with eigenvalue $-\mu$.

