Solution 7

1. (a) The feasible set is $[2,4]$. The optimal value is 5 . The optimal solution is 2 .
(b) $L(x, \lambda)=x^{2}+1+\lambda(x-2)(x-4)$ and $q(\lambda)=\min _{x \in \mathbb{R}} L(x, \lambda)=L\left(\frac{3 \lambda}{\lambda+1}, \lambda\right)=-\lambda-\frac{9}{\lambda+1}+10$.
(c) Solving $q^{\prime}\left(\lambda^{*}\right)=0$, we have $\lambda^{*}=2$ and $q\left(\lambda^{*}\right)=5$. The strong duality holds.
2. (a) There is only one feasible point $x=0$ and the primal optimal value is 0 .

The dual problem is

$$
\max _{\lambda \geq 0} q(\lambda)=-\frac{1}{4 \lambda}
$$

Since $q(\lambda)$ increases to 0 as $\lambda \rightarrow \infty$, there is no duality gap.
(b) There is no λ such that $-\frac{1}{4 \lambda}=0$. Hence, the dual problem has no solution.
3. (a) The fensible set is $\{(1,0)\}$. The optimal solution is $(1,0)$. The optimal value is 1 . (b)

$$
\begin{aligned}
2 x_{1}+2 \lambda_{1}\left(x_{1}-1\right)+2 \lambda_{2}\left(x_{1}-1\right) & =0 \\
2 x_{2}+2 \lambda_{1}\left(x_{2}-1\right)+2 \lambda_{2}\left(x_{2}+1\right) & =0 \\
\lambda_{1}\left(\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}-1\right) & =0 \\
\lambda_{2}\left(\left(x_{1}-1\right)^{2}+\left(x_{2}+1\right)^{2}-1\right) & =0 \\
\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}-1 & \leq 0 \\
\left(x_{1}-1\right)^{2}+\left(x_{2}+1\right)^{2}-1 & \leq 0 \\
\lambda_{1}, \lambda_{2} & \geq 0
\end{aligned}
$$

When $\left(x_{1}, x_{2}\right)=(1,0)$, there is no solution to the first equation, so there are no λ_{i}, λ_{2} such that $x^{*},\left(\lambda_{i}^{*}, \lambda_{i}^{*}\right)$ satisfy KKT conditions.

