Solution 7

1. (a) The feasible set is [2, 4]. The optimal value is 5. The optimal solution is 2.

(b) $L(x,\lambda) = x^2 + 1 + \lambda(x-2)(x-4)$ and $q(\lambda) = \min_{x \in \mathbb{R}} L(x,\lambda) = L\left(\frac{3\lambda}{\lambda+1},\lambda\right) = -\lambda - \frac{9}{\lambda+1} + 10.$ (c) Solving $q'(\lambda^*) = 0$, we have $\lambda^* = 2$ and $q(\lambda^*) = 5$. The strong duality holds.

2. (a) There is only one feasible point x = 0 and the primal optimal value is 0.

The dual problem is

$$\max_{\lambda \ge 0} q(\lambda) = -\frac{1}{4\lambda}.$$

Since $q(\lambda)$ increases to 0 as $\lambda \to \infty$, there is no duality gap.

(b) There is no λ such that $-\frac{1}{4\lambda} = 0$. Hence, the dual problem has no solution.

3. (a) The fensible set is $\{(1,0)\}$. The optimal solution is (1,0). The optimal value is 1. (b)

$$2x_{1} + 2\lambda_{1} (x_{1} - 1) + 2\lambda_{2} (x_{1} - 1) = 0$$

$$2x_{2} + 2\lambda_{1} (x_{2} - 1) + 2\lambda_{2} (x_{2} + 1) = 0$$

$$\lambda_{1} ((x_{1} - 1)^{2} + (x_{2} - 1)^{2} - 1) = 0$$

$$\lambda_{2} ((x_{1} - 1)^{2} + (x_{2} + 1)^{2} - 1) = 0$$

$$(x_{1} - 1)^{2} + (x_{2} - 1)^{2} - 1 \leq 0$$

$$(x_{1} - 1)^{2} + (x_{2} + 1)^{2} - 1 \leq 0$$

$$\lambda_{1}, \lambda_{2} \geq 0$$

When $(x_1, x_2) = (1, 0)$, there is no solution to the first equation, so there are no λ_i, λ_2 such that $x^*, (\lambda_i^*, \lambda_i^*)$ satisfy KKT conditions.